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Abstract

In a factor timing context, recent studies have emphasized on developing techniques that reduce the factor
dimension and demonstrated return predictability using only a few predictors with specific choice of esti-
mation design. This focus inadvertently neglects the crucial issue of model instability that has been shown
to plague the forecasting literature. Using almost a hundred equity factors and a broader set of predictor
variables, I find that the forecasting performance of recent factor timing techniques is indeed sensitive to the
choice of empirical design. Applying a variety of shrinkage methods on predictors and focusing on forecasting
individual factors to better capture the dynamics between factor returns and predictive signals, I document
robust evidence of out-of-sample predictability and more stable investment performance for factor timing
strategies. The optimal timing portfolio has a 30% higher Sharpe ratio and generates more than twice the

economic gains relative to the factor dimension-reduction approach.
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1 Introduction

Factor investing is one of the fastest-growing areas in the asset management industry, with about $1.45
trillion in U.S. factor exchange-traded products alone as of 2021 (Morningstar, 2022). There is a growing
literature in asset pricing that attempts to predict factor returns, and thus to improve performance of factor
investing with factor timing.! To assess whether a variable (e.g., prior one-year factor returns) has predictive
ability, a typical specification is to regress the future return of a factor (e.g., the size factor) on the lagged
variable

Riovn = Bo + b1 Xt + €cttn, (1)

where Ry.4p is the h-period ahead excess return of the factor, and X; is the lagged predictor variable.
Table 1 provides a list of variables that have been shown to be good predictors, including investor sentiment
(Stambaugh, Yu, and Yuan, 2012), aggregate mutual fund flows (Akbas, Armstrong, Sorescu, and Subrah-
manyam, 2015), book-to-market ratio (Cohen, Polk, and Vuolteenaho, 2003, Kelly and Pruitt, 2013, Haddad
et al., 2020, Baba-Yara, Boons, and Tamoni, 2021), industry-adjusted book-to-market ratio (Baba-Yara et
al., 2021), issuer-repurchaser spread (Greenwood and Hanson, 2012), time-series momentum (Moskowitz,
Ooi, and Pedersen, 2012), volatility (Moreira and Muir, 2017), factor momentum (Gupta and Kelly, 2019,
Ehsani and Linnainmaa, 2022), and portfolio characteristics (Kelly et al., 2023, Kagkadis, Nolte, Nolte, and
Vasilas, 2023).2

Similarly growing is the documentation of hundreds of equity factors (e.g., Cochrane, 2011 and McLean
and Pontiff, 2016) that creates a challenge to provide credible evidence of predictability using Equation 1. This
challenge has shifted recent studies to focus on developing methodologies that reduce the factor dimension
for predictability (e.g., Haddad et al., 2020). As a result, these papers often illustrate the predictive ability
of their techniques with a few predictor variables and specific choice of test factors and estimation designs.
Because model instability is a critical issue that has plagued the financial forecasting literature (e.g., Goyal
and Welch, 2008 and Goyal, Welch, and Zafirov, 2023), it is reasonable to question whether the forecasting
performance documented in these studies extends to the wide range of factors and predictors featured in the
factor timing literature, and whether it is robust to the choice of estimation design (e.g., Rossi and Inoue,
2012 and Rossi, 2013).3

I answer these questions by providing a comprehensive analysis of the predictive ability of nine variables

for a broad sample of 92 equity factors. Using both predictive regressions and techniques that reduce the

1See, e.g., Haddad, Kozak, and Santosh (2020) and Kelly, Malamud, and Pedersen (2023).

2Favero, Melone, and Tamoni (2022), Huang, Song, and Xiang (2022), and Dong, Kang, and Peress (2022) are examples of
working papers that explore other predictors of factor returns.

3There is also evidence from the asset management industry suggesting that the factor timing strategies is difficult to
implement in real time due to outliers (e.g., Asness, 2016, Asness, Chandra, Ilmanen, and Israel, 2017, and Dai and Dong,
2023).



factor dimension, I find that no systematic evidence of return predictability for most variables under common
estimation designs. I provide statistical evidence that this poor performance stems primarily from structural
instability in forecasting models. Exploring several shrinkage techniques that combine predictive signals from
all variables and focusing on predicting individual factor returns, I find robust evidence in favor of factor
return predictability. This finding highlights the role of machine learning applications in improving factor
timing strategies.

I first examine the predictive ability of nine variables for a broad sample of 92 equity factors with an
emphasis on their real-time performance. Using univariate predictive regressions, I conduct a comprehen-
sive out-of-sample analysis with a recursive estimation design. The main performance measure is Campbell
and Thompson’s (2008) out-of-sample R? (R%) ), which intuitively captures how good return forecasts from
predictive regressions are compared to historical mean forecasts. Positive RQOS suggests that predictive re-
gressions beat the historical average, and higher R2O g implies potentially larger economic value of factor
timing. I also use total R% g to evaluate the predictability across all factors (see, e.g., Gu, Kelly, and Xiu,
2020).

The results indicate no systematic evidence that factor returns are predictable out of sample. The median
RQO g across 92 factors is negative for eight of nine variables. The total R?) g 1s either negative or almost zero
for all but investor sentiment. Across nine predictors, only 5%-28% of factors are predictable with standard
statistical significance.* The weak performance is pervasive across all categories. Momentum and investment
factors exhibit almost no evidence of predictability. Favorable evidence among other factor groups is, if
any, meager. These out-of-sample results highlight the weakness of forecasting factor returns with predictive
regressions and motivate the development of other forecasting approaches.

Recently, Haddad, Kozak, and Santosh (2020) (hereafter HKS) propose an approach to predicting factor
returns that avoids running univariate regressions for many factors. HKS focus on forecasting returns of the
largest principal components (PC) that summarize the structure of factor returns, and infer individual factor
predictability via exposure of each factor to these PCs. For out-of-sample tests, HKS adopt a split-sample
estimation weighting scheme and find strong evidence of factor predictability. Using their exact empirical
design, I confirm the main finding that book-to-market ratio has a strong predictive ability for a large number
of factors.

Although this empirical choice shows an impressive result, the split-sample design is an unconventional
choice in the literature. There are several econometric concerns that motivate the use of more common designs

(e.g., recursive regressions), including estimation risk, structural breaks, and power of out-of-sample tests.

4Inoue and Kilian (2005) show that out-of-sample tests based on the mean squared prediction errors (MSPE)-normal statistic
(Diebold and Mariano, 1995, West, 1996) have low power, and thus we should discount weak out-of-sample evidence in favor of
strong in-sample results. The out-of-sample tests in this paper use the MSPE-adjusted statistic, which Clark and West (2007)
show to have higher power.



Due to these concerns, I re-examine the performance of the PC portfolio approach with three estimation
schemes (i.e., split-sample, recursive, and rolling-window). Combined with nine predictors, I conduct an
extensive analysis for 27 cases in total.

I find no systematic evidence for factor return prediction under the more common estimation designs.
The mean R% g with book-to-market ratio as predictor reduces from 0.64% under the split-sample design to
-0.11% and -0.31% under the recursive and rolling-window designs, respectively. The number of predictable
factors with statistical significance also reduces by half. This deterioration in performance is pervasive across
all variables. Across all 27 cases, the split-sample results are more likely to indicate stronger evidence of
predictability, but such evidence either deteriorate or disappear under the common estimation schemes. For
most predictors, less than a handful of factors are predictable with statistical significance at the 1% level.

Next I investigate whether the PC portfolio approach systematically improves performance of the optimal
timing portfolio relative to the static factor investing portfolio. The optimal portfolio is constructed from
the market factor and the first five PC portfolios. I find that while the PC portfolio approach improves the
Sharpe ratio and utility gains of the optimal timing portfolio under the split-sample design, the incremental
economic values from anomaly timing become marginal under the recursive and rolling-window schemes.
Across nine predictors, the Sharpe ratio of the optimal timing portfolio is systematically lower than that
of the static strategy. For utility gains, only the timing strategies based on factor momentum appear to
outperform. I also find that increases in the variance of the implied stochastic discount factor (SDF) are
typically more modest under the alternative estimation schemes. Except for factor momentum, the increase
ranges between 11% to 45%, which is much less impressive than the 80% increase in the base case with book-
to-market ratio. These results collectively question the ability of the PC portfolio approach to document
time-varying factor premia and its implications for factor-based asset pricing model.

An economic explanation for the differences in the predictive performance across estimation designs is
potential structural changes in the relation between factor returns and their predictors. I provide evidence
that there exists several structural breaks in the predictive relations for three out of five largest PCs. More-
over, only a few factors maintain consistent predictive relations (i.e., correct predictive signs with statistical
significance) in both halves of the sample at the individual factor level. I also examine another source of
model instability, namely the time-varying factor loadings (i.e., the eigenvectors of the covariance matrix of
factor returns). Intuitively, the factor loadings determine the exposure of factor portfolios to the PCs, and
thus contribute to the individual factor predictability. I find statistical evidence that there exists at least
one large structural change in the factor loadings during the sample period. Taken as a whole, substantial

structural breaks create a difficulty for the PC portfolio approach to provide stable evidence of factor timing.



The results so far highlight structural changes as a critical hurdle to provide consistent evidence of factor
return predictability out of sample. A simple solution to reduce the impact of structural breaks on forecast
accuracy is combining forecasts from multiple signals (e.g., Diebold and Pauly, 1987). This approach also
avoids the difficulty in estimating break points in real time, and the bias-variance trade-off in break estimation
methods. I explore five common shrinkage techniques, including forecast combination, discount mean square
of prediction errors, predictor average, principal component regression (PCR), and partial least squares
(PLS). I find systematic evidence in favor of factor return predictability across all five methods. The mean
R% ¢ is between 0.52% and 1.08%, and the total R% 4 ranges between 0.60% and 1.30%. Advanced machine
learning methods such as PCR and PLS show that more than half of factors are predictable with statistical
significance at least at the 10% level. The shrinkage approach improves predictability across all categories.
While simple methods such as forecast combination improves predictability for momentum and investment
factors, machine learning methods show strong evidence of predictability for other factor categories. These
results highlight the stable ability of the shrinkage approach in predicting a large set of anomaly portfolios.

The strong predictability implies potential economic gains for factor timing strategies. From the per-
spective of mean-variance investors, I use return forecasts from the shrinkage methods to estimate optimal
allocations to the original factor portfolios, and evaluate factor timing portfolios in terms of their Sharpe
ratios and Certainty Equivalent Returns (CER). The shrinkage approach routinely leads to substantial im-
provement for timing strategies. While the mean annualized Sharpe ratio across the pure factor investing
strategies (i.e., allocations based on the historical averages) is only 0.11, it increases more than twice for
timing strategies across five shrinkage methods. There are also substantial utility gains with factor timing
under this approach. The mean annualized CER is between 2.39% and 4.00%, compared to an average of
0.40% with factor investing.

Finally, I examine the performance of the optimal timing portfolio under the shrinkage approach. To
make a direct comparison with the PC portfolio approach, I adopt the exact procedure of the latter, but
estimate expected returns of the PCs using the individual factor return forecasts from the shrinkage methods
rather than using the PC predictors. The contributing weight of individual forecasts for each PC corresponds
to their loadings on the PC. Following this modification, the optimal timing portfolio produces annualized
Sharpe ratio between 0.74 to 0.94 across five methods, compared to an average of 0.72 under the original
PC approach across nine predictors. In terms of utility gains, PCR and PLS methods deliver almost twice
as large as CER. These methods also imply large variance of the implied SDF at 2.00 and 2.89, respectively,
compared to the average 1.70 under the original PC approach.

This paper contributes to the literature on factor timing by documenting that the shrinkage approach

provides conclusive evidence for factor return predictability. A recent approach developed by Kelly et al.



(2023) exploits the cross-predictability of a factor characteristic for other factor returns. Another paper by
Kagkadis et al. (2023) follow HKS to forecast PC portfolio returns, but apply dimension-reduction techniques
on PC portfolio characteristics to construct predictors. The approaches in these studies rely on estimation
of predictability of principal portfolios, and it remains unclear whether its performance depends on the
subjective choice of factors and number of principal components (e.g., Bessembinder, Burt, and Hrdlicka,
2022, Bessembinder, Burt, and Hrdlicka, 2024). The shrinkage approach avoids this by focusing on the
predictability of individual factors. In this direction, a paper closely related to this paper is Neuhierl, Randl,
Reschenhofer, and Zechner (2023). While their paper adopts only partial least squares regressions to assess
the economic gain of timing individual factors, this paper shows that other shrinkage techniques can also
improve factor return predictability.

This paper also adds to the literature on data snooping in return prediction. Starting with Goyal and
Welch (2008), there has been a growing number of studies that invalidates the ability of predictor variables
(e.g., Goyal et al., 2023, Cakici, Fieberg, Metko, and Zaremba, 2024) and new methods (e.g., Cakici, Fieberg,
Neumaier, Poddig, and Zaremba, 2024) in timing the market factor. Interests from both investment industry
and finance academia, combined with the factor zoo, have spurred the discovery of more variables and
methods in forecasting anomaly returns. This paper complements recent papers that challenge the ability of
some prior predictors in this literature (e.g., Novy-Marx, 2014, Fan, Li, Liao, and Liu, 2022) by providing a
comprehensive assessment for a broad set of factors and predictors in out-of-sample settings. This paper also
re-emphasizes the importance of common empirical exercises in documenting time-series predictability from
the econometrics literature by showing that variations in estimation designs can produce different conclusions
of predictability (Rossi, 2013).

Last, the evidence from this paper have important investment implications. There has been a debate
whether factor timing is implementable in practice (e.g., Asness, 2016, Arnott, Beck, and Kalesnik, 2016).
This paper sheds light on understanding where the disparity in conclusion may come from, and suggests
that advanced machine learning methods are promising for the practical implementation of factor timing

strategies.

2 Data and Methodology

I describe the sample of factor portfolios used in the empirical analyses in Section 2.1, the predictor variables

in Section 2.2, and the methodology for forecasting evaluation in Section 2.3.



2.1 Factor portfolios

I consider non-overlapped factors from Hou, Xue, and Zhang (2015), Kelly, Pruitt, and Su (2019), and
Haddad et al. (2020), and restrict the sample to factors that are based on a single, continuous sorting
variable. To ensure sample consistency, I require that data on sorting variables is available from 1970.% This
process identifies 92 characteristic variables for which I can construct factor portfolios and their predictors
from January 1970 to December 2021.

I follow the convention in selecting stocks for the construction of factor portfolios. I consider the universe
of firms covered by the Center for Research in Security Prices (CRSP) and the Compustat Fundamentals
Annual (Compustat). I include only U.S. common stocks that are listed on NYSE, AMEX, and NASDAQ),
and exclude utility and financial firms. To mitigate the impact of small stocks, I require stocks to have
market price greater than $1 at the portfolio formation date. I collect the firm-level characteristics from the
CRSP Monthly and Daily Stock Files and the Compustat Annual and Quarterly Files, and sort firms into
ten value-weighted portfolios for each of the characteristic using the breakpoints from only NYSE firms. I use
the CRSP monthly file to calculate the monthly return series for each decile portfolio. Each factor portfolio
is constructed by taking a long (short) position in the decile that is expected to outperform (underperform)
based on prior literature.

Since many factors use related characteristics, I follow the classification scheme of Hou et al. (2015) and
Hou, Xue, and Zhang (2020) to classify each factor into one of six categories: momentum, value, investment,
profitability, intangibles, and trading frictions. Table A1 provides additional detail on sample selection, factor

categories, average return and Fama and French’s (1993) 3-factor alpha for the factor portfolios.

2.2 Predictor variables

I consider predictors of anomaly returns from published studies in which the time-series data of a predictor
is sufficiently long. This restriction mitigates concerns of data snooping and estimation risk, especially in
out-of-sample settings (e.g., Rossi and Inoue, 2012). This process identifies nine predictors: book-to-market
ratio (BM ), industry-adjusted book-to-market ratio (IND.BM), issuer-repurchaser spread (ISSREP), prior
one-moth factor return (MOM1I), prior 12-month factor average returns (MOM12), volatility ( Volatility),
characteristic spread (CS), long-run reversal (LRREV'), and investor sentiment (SENT). Except for SENT,
the others are factor-specific. I briefly describe the construction of these predictors here, and leave the detail

in Table A2 in the Appendix.

5Since data on the bid-ask spreads is sparse before 1980, I use Amihud’s (2002) illiquidity measure as a substitution.



Book-to-market ratio and its industry-adjused version I follow Baba-Yara et al. (2021) to construct
the book and market value for each firm. Following HKS, a portfolio’s book-to-market ratio is defined as the
sum of the book value relative to the total market value of all firms in that portfolio. The (net) book-to-market
ratio of a factor portfolio is constructed as the difference in natural logarithm of the book-to-market ratio
between the long and the short portfolios. For industry-adjusted book-to-market ratio of a firm, I subtract
from the firm’s book-to-market ratio the value-weighted average book-to-market ratio of the industry the
firm belongs to. A portfolio’s industry-adjusted book-to-market ratio is defined as the value-weighted average

of the industry-adjusted book-to-market ratio of all firms in that portfolio.

Issuer-repurchaser spread I follow Greenwood and Hanson (2012) to construct ISSREP of a characteristic
portfolio as the difference in the weighted average of the underlying characteristic between issuers and
purchasers. Greenwood and Hanson (2012) define issuers (purchasers) as firms whose net stock issuance is
greater than 10% (less than -0.5%). I follow Fama and French (2008) and define net stock issuance as the

change in log split-adjusted shares outstanding from Compustat annual file.

Factor momentum I use Gupta and Kelly’s (2019) prior one-month factor return for MOM1. For MOM12,
I use the indicator version of prior 12-month average returns as Ehsani and Linnainmaa (2022) use in their
main analysis (see their Table II). In particular, MOM12 for a factor is an indicator variable that equals one

if the factor portfolio’s average return over the past 12 months is positive and zero otherwise.

Volatility Following Moreira and Muir (2017), T use the realized variance of daily factor returns in the prior
month to estimate the factor’s volatility. To mitigate skewness concerns, I scale the variable by the average

of monthly variances up to the prior month, and take the natural logarithm.

Characteristic spread I transform each characteristic into a [-0.5,4-0.5] interval and calculate a factor’s
characteristic spread as the difference in the value-weighted characteristic between the long and the short

leg of the factor (Kelly et al., 2023).

Long-run reversal I calculate a factor’s long-run reversal signal as cumulative returns over the past 5 years,

scaled by the realized variance of the factor’s returns over the same period (Moskowitz et al., 2012).

Investor sentiment For in-sample tests and out-of-sample tests that use a split-sample estimation design,
I use Baker and Wurgler (2006) full-sample orthogonalized sentiment series. For out-of-sample tests that
use either a recursive or a rolling-window estimation design, I follow Huang, Jiang, Tu, and Zhou (2015) to
create a look-ahead bias-free version of the index. First, at each out-of-sample month ¢+ 1, I use the data on

five individual components of investor sentiment (i.e., the close-end fund discount rate, the number of IPOs,



the 12-month lagged first-day returns of IPOs, the 12-month lagged dividend premium, and the equity share
in new issues) from July 1965 to month ¢, and standardize them to have mean of 0 and standard deviation of
1. Second, I obtain the orthogonalized version of these series by regressing each series on six macroeconomic
variables as in Baker and Wurgler (2006), and retain the residuals from the regressions. I smooth each residual
series with their six-month average values to mitigate outliers in each series. With predictive regressions and
the PC portfolio approach, I use the first principal component of the five individual series as predictor.
For all shrinkage methods, I use all five individual measures as predictors. I obtain data on the full-sample
orthogonalized sentiment index, its original five components, and six macroeconomic variables from Jeffrey

Wurgler’s webpage.©

2.3 Methodology
2.3.1 Forecasting methods

Predictive regressions Under the assumption of time-varying expected returns, I obtain predictive coef-

ficient estimates by running the time-series regression
Rit41 = Bo+ 51Xt + Etit41, (2)

where Ry¢.;y1 is the one-period ahead excess return of the factor, and X; is the lagged predictor variable. A

one-month ahead return forecast formed at time ¢ for a factor 7 is
Rivi1 = Bio + Bu X, (3)

where ;9 and ;1 are predictive coefficient estimates.

The PC portfolio approach Under the assumption that excess factor returns have a linear latent factor

specification, a factor portfolio i’s return can be represented as follows

K
Ripi1 =Y wiPCly +eip, (4)

k=1
where PCtkH is the kth PC in month ¢ + 1, and w’ is the loading of factor i on the kth PC. In empirical
tests, I follow HKS and set K = 5. I estimate the PCs and factor loadings with the principal component
estimation. The data I use for estimation depending on the forecasting estimation design. For example, if

the design is recursive window, I recursively re-estimate the PC returns and factor loadings in every month.

6The data, updated until June 2022, is available at https://pages.stern.nyu.edu/~jwurgler/. I thank Jeffrey Wurgler for
making the data available.


https://pages.stern.nyu.edu/~jwurgler/

For factor-specific predictor variables, I use the eigenvectors obtained from the PC estimation to construct
the PC predictors. For SENT, I use the sentiment index to predict one-month ahead PC returns. I estimate

predictive coefficients for the PCs as follows:
PCF L = A+ MV X, + €y (5)

It follows that a return forecast formed in month ¢ for the kth PC portfolio is A + A¥ X;, where A and A

are estimated from Equation 5. I obtain a return forecast formed at time ¢ for factor i as

5
~ =k
Rit41 = wapct-uy (6)

k=1
—k
where @F is the estimated loading of factor i on the kth PC, and PC, 11 is a one-month ahead forecast of

the kth PC.

The shrinkage approach I use five shrinkage techniques, including forecast combination (FC'), discount
mean square of prediction errors (DMSPE), predictor average (Average), principal component regression
(PCR), and partial least squares (PLS). FC forecast is the equal-weighted average of forecasts from univari-
ate predictive regressions. For each factor, I obtain individual forecasts by running the predictive regression
with each predictor separately, then take the arithmetic mean of the individual forecasts. Similar to FC, DM-
SPE forecast is the weighted average of individual forecasts from univariate predictive regressions; however,
forecasts that have lower prediction errors over a holdout period have greater weight. For Average, I first
take the arithmetic mean of all (standardized) predictors to construct a single variable. For PCR, I first ex-
tract the first principal component from the set of predictors. Both Average and PCR then use the resulting
variables to predict factor returns in univariate predictive regressions. For PLS, I construct a target-relevant
series from all variables, and use this series to predict factor returns with univariate predictive regressions.

For all shrinkage methods, I perform the estimations using only real-time data to avoid look-ahead bias.

2.3.2 Performance evaluation

I assess the statistical accuracy of each forecasting approach via mean squared of prediction errors (MSPE).

P

; ﬁl‘ . as the conditional forecast error of factor ¢ in month ¢+ 1 under approach m and

Denote €™, and €

b1t

the prevailing mean, respectively. The sample MSPE is calculated as

—m 1 2.
MSPE; = =3 &7, (7)

t=0



where T is the number of out-of-sample observations. I adopt Clark and West’s (2007) procedure to test the
null hypothesis that the MSPE under the prevailing mean benchmark (i.e., ]\ZS’?E;DM) is less than or equal
to the MSPE under approach m. A rejection indicates that forecasts made by method m are statistically
better than the historical mean.
I also calculate and report the Campbell and Thompson’s (2008) R% 4 for each factor (subscript sup-
pressed) as
—m
Rbs=1- 2ot 0
MSFE

To assess the predictive ability across all factors, I follow Gu et al. (2020) and extend Equation 8 to calculate

total R? as follows” o

Total Rg =1 — ———
>, MSPE;

(9)

3 Predicting factor returns with predictive regression approach

In this section I analyze the out-of-sample predictive ability of the variables for each factor using the con-
ventional predictive regression approach. I adopt a recursive estimation design to evaluate out-of-sample
evidence. For each factor and predictor, I use the first half of the sample (1970:01 to 1995:12) as the initial
training period to estimate the parameters of the predictive regression model, namely £y and 1 from Equa-
tion 2, for the forecasts of 1996:01. I expand the estimation window each month to construct forecasts for the
rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12. The expanding-window
estimation design allows me to use all past information for estimation; hence, alleviates estimation risk.
Moreover, the long evaluation period mitigates the concern of low power in the out-of-sample tests (Inoue
and Kilian, 2005).

I present the out-of-sample results in Table 2. Panel A reports the summary statistics of R ¢s, the total
R%S, and the number of R2O ¢ that is statistically significant at least at the 10% level. The out-of-sample
predictive ability of most predictors is weak. Column (1) shows that except for investor sentiment, the mean
R%S is either negative or marginally positive. The median R2O g in Column (3) is negative for all predictors
but SENT, suggesting that the predictive regression model for a median factor performs worse than the
historical mean model. Column (5) provides further evidence that out-of-sample predictability as a whole is
weak. Column (6) reports the number of predictions that yield positive RQO g, and those that are statistically
significant (p-value less than 10%). Across the predictors, the number is low, ranging from 5 to 26 out of

92 factors. For example, the number of predictable factors using BM is only 23, less than a third of the

7Gu et al. (2020) and Gu, Kelly, and Xiu (2021) calculate the total RZ o for individual stocks. Their calculation is different
from Equation 9 in that they assume an unconditional expected return of zero for all stocks. In my setting, this assumption
implies comparing forecasts made under method m to a zero-return forecast. However, Gu et al. (2020) highlight that this
assumption is only suitable for individual stocks, and is not reasonable for long-short portfolios.

10



factor sample. These results suggests that the forecasts made by most predictors perform no better than the
prevailing mean forecasts.

Next I examine the out-of-sample evidence across six factor categories. Panel B reports the total RZ g
and the number of statistically significant R%g (p-value less than 10%) for all six categories. There is
weak evidence of factor return predictability across all factor categories, with only a few exceptions. Value
and volatility appear to predict momentum factors, but the number of predictable factors in this group
remains less than half. While value factors appear to be predictable with the 12-month factor momentum,
profitability factors are strongly predictable with the one-month version. For all factor categories except
momentum, SENT appears to be good predictor. Nevertheless, the number of predictable factors using
investor sentiment remains low, suggesting that a few strong predictable factors are driving the result.

In summary, the out-of-sample results show that the predictive regression approach does not systemat-
ically provide evidence in favor of factor return predictability. In the next section, I analyze whether the

principal-component portfolio approach can provide stronger evidence.

4 Predicting factor returns with principal component portfolio
approach

Haddad et al. (2020) estimate expected factor returns through the forecasts of the largest principal compo-
nents of the factors. HKS show that a few large components is sufficient to explain majority of variances in
the cross-section of expected factor returns. Subsequently, return forecasts for individual factors based on
the forecasts of the dominant components are less noisy. Using the book-to-market ratio as predictor and a
split-sample estimation design, HKS demonstrate a strong out-of-sample forecasting performance for a set
of 50 equity factors.

In Section 4.1 T use my broader sample and HKS’s estimation design to confirm the outstanding per-
formance of the PC portfolio approach. In Section 4.2 I show that this performance disappears when other
estimation designs common in the literature are employed. I provide some potential explanations in Section

4.4.

4.1 The PC portfolio approach in predicting factor returns

I begin by describing in detail the empirical choices used in HKS. The original study constructs a set of 50
factor portfolios from 1974:01 to 2017:12. Table A1 in the Appendix provides more detail on the identity of
these factors. The first step in the PC portfolio approach requires identifying the dominant equity components

that summarize the cross-section of expected factor returns. It also requires estimating the loading of each
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factor on these common components. HKS obtain these estimates using data from the first half of the sample.
Based on the factor structure (Equation 4), they use the PC estimators to estimate the first five PCs, and the
factor loadings on these components for the full sample. Using the eigenvectors obtained from this process
and the factor-specific book-to-market ratios, they construct the book-to-market ratio for each PC.® Using
only the first half of the data on the PC returns and their predictors, HKS estimate the predictive parameters
in Equation 5, and obtain forecasts of the PC returns for the second half of their sample. Given the PC
return forecasts and factor loadings on the PCs, the authors obtain return forecasts for each factor (Equation
6). HKS use the second half of their sample for out-of-sample evaluation.

I adopt the above split-sample estimation design for my sample, and summarize the predictive perfor-
mance of the approach in Table 3. The first half of the sample is from 1970:01 to 1995:12. Panel A reports
the predictive performance for five PCs using their own book-to-market ratios. The first two rows report the
predictive coefficient estimates and their corresponding t-statistics. Three out of five PCs produce correct
predictive sign, and the second PC is predictable with statistical significance (t-statistic = 2.74). The next
two rows present the full-sample R? and the R2O g- The first two PCs have positive R% g and demonstrate
significant out-of-sample predictability with RZ ¢ over 1%.

The next step in the PC portfolio approach is to obtain return forecasts for individual factors through
their loadings on the five PCs, and evaluate the out-of-sample predictive performance. Panel B of Table 3
reports the predictive performance across factors using the conventional predictive regression approach and
the PC portfolio approach. Columns (1) and (2) provide the distribution statistics of RZ 4. On the one hand,
the mean (median) R% ¢ under the conventional approach is —0.10% (0.03%), confirming the method’s poor
predictive performance documented in Section 3. On the other hand, the PC portfolio method produces
substantially higher R% . The mean (median) under this approach is 0.64% (0.99%). The total R%g in
Column (3) under the PC portfolio method is 1.15%, compared to 0.23% under the conventional method.’
The results suggest that the PC portfolio approach provides evidence in favor of factor return predictability.
In Column (4) I report the number of factors that have positive and statistically significant R% ¢. The number
of predictable factors with statistical significance at the 5% level increases more than twice from 21 under the
traditional approach to 50 under the PC portfolio approach. This statistic confirms the superior performance

of the PC approach method in predicting factor returns.

8HKS market adjust and rescale both the PC returns and their predictors. In their Table 4 (Row 12) they show that the
overall predictive performance in terms of the total R(Q)S is even stronger without these adjustments. To minimize unnecessary
data adjustments and maintain consistency through all forecasting approaches, I do not market adjust and rescale the data in
my sample.

9HKS show that the mean (median) R2 g among their 50 factors under the PC portfolio approach is 1.00% (0.70%). The
total Rzos in their sample is 0.93%. My sample includes 44 factors from HKS’s sample, and does not include the other 6 factors
due to data availability from 1970. When I repeat the test for only 44 factors, the mean, the median, and the total RQOS is
0.60%, 0.74%, and 0.93%, respectively.
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The evidence from the PC portfolio approach is impactful because they resolve the difficulty of recent
studies that use the book-to-market ratio to document factor return predictability (e.g., Asness, 2016 and
Asness et al., 2017). However, I argue in the next section that the estimation design adopted in the original
study is unconventional in the forecasting literature. I show that the implementation of other common

estimation schemes can change the favorable conclusion of factor return prediction.

4.2 Estimation designs and performance of the PC portfolio approach

There are ex ante econometric concerns with the split-sample estimation scheme. First, this scheme is not
desirable to mitigate estimation risk as we expect longer training windows are more likely to reduce estimation
error. Given that estimation error is always a challenge for real-time forecasting exercises, it is widely believed
among empiricists that more data is preferable. Second, it is not obvious how the split-sample estimation
scheme biases return forecasts when there are structural breaks in the relation between future returns and
their predictors.'? For example, Pesaran and Timmermann (2002) suggest that the rolling-window estimation
design is more appropriate if structural changes are frequent and large. Third, the inference of predictability
is affected by the power of out-of-sample tests, which might differ across estimation designs. For instance,
McCracken (2007) show that the recursive design is generally most powerful and the split-sample scheme
is powerful only in particular cases.!! Because of these econometric concerns, it is common in practice to
report forecasting results for several estimation weighting designs (Rossi, 2013).%2

To assess how the PC portfolio approach performs under different estimation designs, I re-perform the
tests in Section 4.1, but adopt both an expanding-widow and a rolling-window design. For direct comparison
with the split-sample results, I use data from the first half to estimate the initial set of all relevant param-
eters for both designs, including the eigenvectors, the PC returns, the factor loadings on the PCs, and the
parameters from the predictive regressions. I use these estimates to construct return forecasts for 1996:01. I
repeat this procedure each month until the end of the sample period to obtain forecasts for the rest of the
sample. In the expanding-window design, I use all data up to the month that I re-estimate the parameters.

In the rolling window design, I use a rolling window equal to the initial training period.

10 An example of a potential structural change in the predictive relation is that value spreads (e.g., the book-to-market ratio)
are no longer informative about the future performance of the value anomaly in recent decades (e.g., Asness, 2016). Another
pontential source of structural instability is time-varying factor premia. For example, Fama and French (2021) document a
difference in the premium of the value factor before and after 1991, or McLean and Pontiff (2016) show that the factor premia
on average are lower out of sample and post publication.

1 McCracken’s (2007) results are based on the tests that use the MSPE-normal statistic (Diebold and Mariano, 1995, West,
1996). The out-of-sample test in this paper uses the MSPE-adjusted statistic, which Clark and West (2007) show to have higher
power for rolling and recursive regressions. However, it is unclear about the power of this test under the split-sample estimation
scheme.

121 also use a reverse-sample design to conduct an “out-of-sample” test. In particular, I use the second half of the sample for
estimation, and the first half of the sample for evaluation. Table A3 in the Appendix summarizes results from this test that
uses BM as predictor. The general conclusion about the performance of the PC portfolio approach across estimation designs in
later analyses does not change materially.
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With three estimation designs and nine predictors, I examine the out-of-sample predictive performance of
the PC portfolio approach for 27 cases. The base case uses BM as predictor and the split-sample design for
estimation. Figure 1 summarizes the distribution of the R% ¢ for all cases. The black, red, and blue bar colors
indicate results for the split-sample, the expanding-window, and the rolling-window design, respectively.
Panels A, B, and C show the mean, the median, and the total R ¢ across 92 factors for each case, respectively.

First, I investigate the results using BM as predictor. Panel A reveals a remarkable difference in the
mean RQO s between the split-sample scheme and the other two schemes. Compared to the mean of 0.64%
under the split-sample scheme, the statistic is negative using the expanding- (—0.11%) and rolling-window
(—0.31%) estimators. The result suggests that return forecasts for a factor that use the value spread is worse
than the prevailing mean forecasts on average. Panel B confirms this conclusion as the median R%) 5 15 0.07%
and -0.23% under the recursive and rolling-window schemes, respectively. The total RQOS reported in Panel
C reduces more than three times from the split-sample scheme, further suggesting that the evidence in favor
of factor return predictability using book valuation is unstable.

The large gap in the predictive performance between the split-sample scheme and the other two schemes
is not exclusive to BM as predictor. Across all 27 cases, the split-sample results are more likely to indicate
stronger evidence of predictability, but such evidence either deteriorate or disappear under the recursive and
rolling-window designs. Among nine predictors, only MOM1 and SENT appear to indicate some evidence of
factor return predictability. However, the variation of evidence is still large across the schemes: the median
R2O g for MOM1 and SENT is positive under the recursive design but is either marginally positive or negative
under the rolling-window scheme. Figure 2 shows the number of significant predictions from the out-of-sample
tests across three estimation designs. Panel A shows that the results for the R2O g tests at the 5% level of
statistical significance. When the predictor is value spread, the number of predictable factors reduces by half
from 50 under the split-sample scheme to 25 under the rolling-window scheme. The deteriorating performance
is more pronounced with the number of significant predictions at the 1% level. For most predictors, only less

than a handful of factors are predictable with strong statistical evidence.

4.3 Performance of the optimal timing portfolio and variance of the stochastic
discount factor

HKS show that strong factor predictability implies better performance for the optimal timing portfolio

relative to its static version. Because the optimal portfolio is equivalent to the stochastic discount factor

(SDF), they also show that the variance of the implied SDF is substantially larger, challenging theoretical

models to explain this property in the cross-section of asset returns.
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I investigate how the optimal timing portfolio performs and the implied SDF varies under the PC portfolio
approach across the three estimation designs. The optimal timing portfolio is constructed based on the market
factor and the first five PC portfolios. To focus on the incremental benefit of timing anomaly portfolios for
each of nine predictors, I use historical means for market forecasts (i.e., no timing for the market factor),
and use the PC portfolio approach to make expected return forecasts for the PCs. The optimal weight for

this anomaly timing (AT) strategy is estimated as

. PN L1 .5
ats = (VE) T [RurrrE41, PCoyrs - - POy, (10)

where is 5)25 the estimated covariance matrix of forecast errors, RM KTRF.t+1 is the historical mean of the
.k
market factor, PC,,, is the kth PC return forecast, and v is a risk aversion parameter equal to one. I

estimate the conditional variance of the SDF m;; as
varg (th) = (f:’;\Tﬂ:EtaJAT,t (11)

Figure 3 shows the relative performance of the optimal AT portfolio to the optimal factor investing
portfolio in which return forecasts are historical means. Panel A (B) shows the incremental change of the
annualized Sharpe ratio (Certainty Equivalent Return) in percentage. Under the split-sample design, anomaly
timing with BM increases the economic value of the optimal portfolio, especially for the utility gains.
However, the gains decrease substantially under the other two estimation schemes. Relative to anomaly
investing, anomaly timing produces lower Sharpe ratio for the optimal portfolio with almost no differences
in utility gains. Across nine predictors, the Sharpe ratio of the optimal AT portfolio is systematically lower
than that of the static strategy. For utility gains, only factor momentum appears to yield consistently higher
value for either recursive or rolling-window design.

Panel C shows the average of estimated conditional variance of the SDF. With BM as predictor, the
average SDF variance increases by 80% under the split-sample design, consistent with HKS’s argument that
incorporating conditional information increases the variance of the SDF to a great extent. However, the
increase reduces to about 40% under the other two estimation designs. Across nine predictors with the
exception of factor momentum, the increases in the average of SDF variance are typically less than 40%
across designs.

Overall, the analyses show that when common estimation schemes are employed, the evidence of factor
return predictability is significantly less impressive and even non-existent in most cases. The performance of
the optimal timing strategy is also not systematically better than the pure factor investing strategy. Since

it is uncommon for empiricists and practitioners to adopt a half-split estimation design in testing predictive
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ability of different models, the results show that models that adopt the PC portfolio approach are not stable.

I discuss potential reasons for the instable performance of the PC portfolio approach in the next section.

4.4 Explanations for instable out-of-sample performance

The recursive and rolling regressions perform worse than the split-sample regressions for two potential
reasons: (i) estimation risk in the regressions of the PC returns on their predictors, and (ii) structural
breaks in the relations between future factor returns and their predictors.

Estimation risk is a prominent concern in the forecasting literature of asset returns (see, e.g., Stambaugh,
1999). An easy solution to mitigate this risk is to have more data for estimation, which aims at reducing the
variance of forecast errors. However, the gain in sample size can be negative if additional information has
large variance or noise (e.g., Meng and Xie, 2014). The intuition is that the OLS estimates of the predictive
parameters equally weight observations with large and small noise; hence, can produce less precise forecasts.
In this context, it is possible that the predictors are more noisy in the second half of the sample.'? This
in turn increases the estimation risk under the designs that use data in this period. While this explanation
might be reasonable for some predictors and factors, it does not appear to be a satisfactory reason for the
systematic weaker performance across all predictors and factors.

A more reasonable explanation is potential structural changes in the relation between the PC returns and
their predictors. In Figure A3 I examine the general predictive performance of the PC portfolio approach
at each out-of-sample month during the evaluation period. For brevity and focus, I show the results for
BM (Panel A), MOM1 (Panel B), and VOL (Panel C). I plot the standardized cumulative sum squares
of errors (SSE) difference, which is a rough proxy for total R34 at each out-of-sample month for three
designs. The solid, dashed, and dotted line indicate the split-sample, recursive, and rolling-window estimation
design, respectively. The shaded areas indicate NBER-dated recessions. For BM in Panel A, the standardized
cumulative SSE difference is almost the same across the designs from the beginning of the out-of-sample
period (1996:01) until early 2000. However, it appears that the dot-com bubble and the followed 2001
financial crisis had strong impact on the return forecasts across three estimation schemes. While the split-
sample regressions produce better forecasts than the historical mean benchmark, the recursive and rolling
regressions yield worse forecasts. Interestingly, the cumulative SSE difference lines are almost parallel after
the 2001 financial crisis. Therefore, it is possible that the lack of modelling the structural changes around
2000 for the recursive and rolling regressions leads to the disparity in performance across these models. A
similar pattern is observable for VOL in Panel C. For MOM1 in Panel B, structural breaks appear to happen
during the 2008 financial crisis and the COVID-19 crisis.

13Gongalves and Leonard (2023), for example, show that book value is not a good proxy for fundamental information in recent
decades. An implication is that the book-to-market ratio can be a noisy predictor of future returns in more recent periods.
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Structural changes in the relation between the PC returns and their predictors can stem from the un-
derlying relation among the individual factors. To investigate this possibility, I perform individual in-sample
predictive regressions for each factor and predictor for two sub-periods and record how many predictive
relations are stable in both halves of the sample. I evaluate the stability based on consistency in predictive
sign and statistical significance. Table A4 in the Appendix reports the results. Column (7) shows the number
of predictions that is consistent from the first to the second half across nine predictors. For most cases, less
than a handful of factors that are predictable with standard statistical evidence in both sub-samples. For
example, BM only predicts seven out of 92 factors consistently for the two periods. These results imply
that the predictive relations among individual factors are subject to structural breaks that might affect the
stability of factor timing models.

Next I use Bai and Perron’s (1998) and Bai and Perron’s (2003) tests to formally investigate structural
changes in the predictive relation between the PC portfolio returns and their predictors. For brevity, I use the
book-to-market ratio as predictor. Table A5 Panel A in the Appendix summarizes results from these tests
for the predictive regressions. I find statistical evidence that three out of five PC portfolios exhibit structural
changes in their relation with BM. PC1 and PC4 have two breaks, and PC2 have one break during the
sample period. Consistent with the observation that cumulative SSE difference has dramatic changes in the
early 2000s, the structural break tests show that PC1, PC2, and PC4 have a break between 2000 and 2001.
The predictive coefficient estimates also experience significant difference before and after this break date.
For example, the predictive estimate for PC2 is negative and statistically insignificant between 1988:11 and
2000:08, but is positive and statistically significant afterward.

Under the PC portfolio approach, the individual factor predictability relies not only on the predictability
of the PC returns, but also on factor loadings on the PCs. Therefore, I use another structural break test,
developed by Chen, Dolado, and Gonzalo (2014), to examine whether the factor loadings (or the eigenvectors
of the covariance of factor returns) are time-varying. Chen et al. (2014) develop a simple test that uses the
sup Wald statistic to detect one big unknown structural break in factor loadings of large factor models. The
procedure regresses the first PC on the other PCs, and tests the null hypothesis that there is no structural
changes in the factor loadings via the relations among the PCs.'* Table A5 Panel B in the Appendix
summarizes results from these tests. I find statistical evidence that there is a big structural change in the
factor loadings among the PCs in 2000:05, which is consistent with my earlier findings that structural breaks

in the predictive regressions are prominent in the early 2000s. In the context of factor timing, the existence of

4By construction, the PCs are orthogonal to each other so the regression of the first PC on the other PCs is not meaningful
when the full-sample data is used. However, the coefficient estimates from the regression can be different from 0 in subsamples
if there are breaks.
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large structural breaks creates a difficulty for a stable performance of forecasting models that use individual
predictors.

The discussion so far highlights structural changes as a critical hurdle in predicting factor returns for
the PC portfolio approach. A clear solution is to incorporate the forecasting of structural breaks into the
forecasting process. However, this exercise is not always implementable due to the difficulty of estimating
break points in real time and the bias-variance trade-off in break estimation methods (see, e.g., Pesaran and
Timmermann, 2005 or Boot and Pick, 2020). A simpler solution to reduce the impact of structural changes
on forecast accuracy is combining forecasts (e.g., Diebold and Pauly, 1987). In the next section I examine
the evidence of factor return predictability using different shrinkage methods that combine forecasts from

all predictors.

5 Predicting factor returns with shrinkage methods

5.1 Summary of out-of-sample predictive performance

First T examine the predictive ability of five shrinkage methods, including forecast combination (FC), dis-
count mean square of prediction errors (DMSPE), predictor average (Average), principal component re-
gression (PCR), and partial least squares (PLS).'> The set of predictors include Book-to-market ratio,
Industry-adjusted book-to-market ratio, Issuer-repurchaser spread, One-month momentum, 12-month mo-
mentum, Volatility, Reversal, Characteristic spread, and five components of Sentiment index. 1 adopt the
same expanding-window design for the out-of-sample tests from previous sections.

For FC, Average, PCR, and PLS, I use an initial training window equal to the first half of the sample.
For DMSPE that requires holdout periods, I use an initial training window from 1970:01 to 1985:12, and
the subsequent 120 months as the holdout period. I expand the training window each month to estimate
forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12.

Table 4 Panel A reports the summary statistics for R2OS, total R%S, and the number of significant
predictions for five methods. For comparison, Panel B reports the lowest and the highest values of the same
statistics across all predictors for the conventional predictive regression and the PC portfolio approach using
the same estimation design. Column (1) in Panel A shows that the mean R4 for the shrinkage methods is
positive and relatively high for all shrinkage methods, ranging from 0.52% to 1.08%. The median under the
PCR method is 1.08%, about more than 50% higher than that of the highest value under the PC portfolio

approach. For simple combination methods (FC and DMSPE), the 25th percentile is about 0.15%, suggesting

15 Advanced machine learning methods are also potential. However, such methods are more suitable for forecasting exercises
that involve a relatively large number of predictors compared to the number of observations. Given that my tests use less than
ten predictors and the main interest is on the relative performance of the shrinkage methods, I adopt the most common methods
among shrinkage techniques.
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that at least three-quarters of 92 factors have forecasts better than the prevailing mean forecasts. For the
predictive performance of these methods as a whole, both PCR and PLS perform equally well with total
R% s at 1.30% and 0.91%, respectively. These statistics represent a substantial improvement over the highest
from the predictive regression (0.68%) and the PC portfolio approach (0.63%). The number of significant
predictions also improves using most of the shrinkage methods. Column (6) shows that 81 out of 92 factors
have forecasts better than the prevailing mean forecasts under the FC' and DMSPE methods. Except for
Average, the results show that more than half of the factors have positive RZ ¢ that are statistically significant

at least at the 10% level.

5.2 Predictive performance across individual factors

To examine which factors are more (less) likely to be predictable, Figure 4 shows the R% ¢ for 92 factors
using the shrinkage methods. Each plot shows the R% ¢ in percent for factors in one of six categories. The
six colors indicate the six ranges of R% 4 among all factors with darker red (green) indicating lower (higher)
R% . The dominance of the green color suggests that the shrinkage methods generally provide evidence in
favor of factor return predictability for all factor categories.

Among six momentum factors, intermediate momentum is predictable with high R% ¢ under most meth-
ods. Industry momentum, prior 6- and 12-month momentum appear to exhibit weak predictability. Among
value factors, 15 out of 20 factors are predictable by all methods. The value factor is highly predictable with
R?)S up to 1.14% under the PCR method. This result suggests that real-time investors can benefit from
timing the value factor even when its unconditional average return is low (Fama and French, 2021). The
profitability factors appear to be strongly predictable for most shrinkage methods with RQO g greater than
0.50%. I also observe a similar pattern for factors in the intangibles and trading frictions groups, although
the R% g is slightly lower on average. The PCR and PLS methods do not seem to provide strong evidence
of predictability for investment factors. However, the simple combination methods (F'C' and DMSPE) still
show that 12 out of 18 factors have positive R2O g- Overall, the results show the shrinkage methods generally

improve the predictability for all factor categories.

5.3 Direct comparison across forecasting approaches

To further highlight the outperformance of the shrinkage methods over the conventional and the PC portfolio
approach, I directly compare how many factors have higher R%) g under the five shrinkage methods. Panels
A and B in Table 5 report the results in comparison to the traditional and the PC portfolio approach,
respectively. To offer evidence of statistical significance, I report in brackets the p-value from a one-sided

binomial test with the null hypothesis that the proportion is less than half. The results from Panel A show
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that the number of factors with higher RZ ¢ under the shrinkage methods is substantially higher compared to
the conventional predictive regression, ranging from 44 to 85. The proportion of such factors is statistically
greater than 50%, with only a few exceptions. In comparison with the PC portfolio approach, the proportion
is still statistically significant for most individual predictors. The PC portfolio approach that uses BM
underperforms all shrinkage methods. Although the PC portfolio approach appears to perform better for
MOM1 and SENT, the PCR method still yields higher RZ ¢ for more than 50% of the factors.

5.4 Economic value of factor timing

In this section I examine the economic value of factor return predictability through the investment perfor-
mance of timed factor strategies. I also use forecast returns obtained from the shrinkage methods to improve

the performance of the PC portfolio approach.

5.4.1 Sharpe ratio

I start with the Sharpe ratio of timed strategies for individual factor portfolios. The main interest is on the
performance of strategies in which I use the shrinkage methods to predict factor returns. For comparison, I
also present the results that use the conventional and PC portfolio approaches. I adopt the same recursive
estimation design from the previous sections to evaluate the performance of timed factor portfolios. For each

out-of-sample month ¢ + 1, I obtain a factor portfolio’s real-time weight at month ¢ as
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where w;";; is the weight of factor portfolio ¢ using forecasting method m for month ¢ + 1, ]A%;”t 41 is the
return forecast of factor portfolio ¢ using forecasting method m for month ¢+ 1, Eri ¢+11 is the sample variance
of factor portfolio ¢ for month ¢ + 1, and « is a risk aversion parameter. I use all data on factor returns
up to month ¢ to estimate 67,,,. I construct the portfolio return for month ¢ + 1 as w(, | R; 11, where
R;.+41 is the actual return of factor portfolio 7 for month ¢ + 1. The outcome of this procedure is a time
series of monthly returns for each timed strategy for the second half of the sample. I set the risk aversion
parameter v to one. To mitigate estimation risk that can yield fluctuating portfolio weights over time, I
impose a leverage constraint that the absolute weight on timed portfolios is less than or equal to two. This
constraint on portfolio positions also takes into account the implementability of these strategies in practice.

Table 6 reports the distribution of annualized Sharpe ratio from timed factor strategies that use return
forecasts from all forecasting methods. Panel A shows the results for the shrinkage methods. To set a

base case, I examine the Sharpe ratio from pure factor investing in which optimal weights use the historical
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means as return forecasts. Row (1) from Panel A shows that the mean Sharpe ratio across 92 factor investing
strategies is 0.11. The median is only 0.09, suggesting that almost half of strategies do not have positive
returns on average during the evaluation period. The subsequent rows report the performance across five
shrinkage methods. The FC' and DMSPE methods produce almost the same distribution of the Sharpe ratio.
The mean Sharpe ratio increases more than twice from the factor investing strategies to 0.23. The Average
method has slightly weaker performance but all distribution statistics still improve compared to the original
factor strategies. For the PCR and PLS methods, the Sharpe ratio improves substantially. For example, the
median R% ¢ using the PCR method increases by more than three times to 0.28.

Next I compare the benefits of factor timing between the shrinkage methods and the first two approaches.
Panel B presents the mean and the median Sharpe ratios of the timed strategies using six predictors under
the conventional predictive regressions, and the PC portfolio approach. Given that two valuation predictors
BM and IND.BM have weak predictive ability under both forecasting approaches, it is not surprising that
their mean Sharpe ratio is only higher than that of factor investing by a small margin. There are higher
gains from predicting factor portfolio returns when MOM1, MOM12, and SENT are predictor. However, the
results show that there is a lack of substantial difference in the performance between the conventional and
the PC portfolio approach. For instance, the mean R%¢ under the PC portfolio method using MOM1 as
predictor is 0.24, a small improvement from 0.22 under the conventional approach. More importantly, most
of these strategies underperform advanced shrinkage methods (PCR and PLS). These results show that the
strong predictive ability of the shrinkage methods can translate into significant economic gains for factor
timing strategies.

To identify timed factor strategies that have high (low) Sharpe ratio, Figure A4 in the Appendix shows the
annualized Sharpe ratio for 92 factors across five shrinkage methods. For each method, I sort the Sharpe ratios
into deciles and use different colors from dark red to dark green to indicate their Sharpe ratio magnitude.
There are differences in the Sharpe ratio among common factors from leading asset pricing models. While
the timed size (SIZE) and gross profitability (PROF) strategies have relatively high Sharpe ratio, the value
(VALUE), investment (INV), and 12-month momentum (MOM12) strategies have more modest gains from

timing exercises.

5.4.2 Certainty Equivalent Return

Another measure to gauge the economic value of timed factor strategies is Certainty Equivalent Return

(CER). I measure the CER for strategy ¢ during the evaluation period as

CER;=R,; —

o
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where R; and 62 are the average return and sample variance of the timed strategy 4, respectively. I adopt
the same parameter choices from the previous section by setting the risk aversion parameter v to one and
imposing a leverage constraint on portfolio allocations of two.

Table 7 reports the distribution of annualized CER in percent from timed factor strategies. Panel A
shows the results when the forecasting methods are the shrinkage techniques. The first row presents the
summary statistics for the factor investing strategies. The mean CER is 0.40%, suggesting that the utility
gains from factor investing are low on average. Nevertheless, 25% of the strategies have high utility gains as
the 75th percentile is 2.98%. The subsequent rows show that the CER improves significantly when I adopt
the shrinkage methods to forecast factor returns. The mean CER is between 2.00% and 4.00%. The utility
gains increase by a large magnitude at the higher end of the distribution. For example, 25% of the factors
have annualized CER greater than 5.00%.

The utility gains under the shrinkage methods are also substantially higher than that under both the
conventional and PC portfolio approaches. Panel B presents the mean and median CER of the timed strategies
using these two methods. Consistent with the poor Sharpe ratios from the previous section, most predictors
yield low CER. Only MOM1 and SENT produce relatively high mean CER using the PC portfolio approach,
at 2.56% and 1.49%, respectively. Nevertheless, these economic gains are substantially lower than those from
the PCR and PLS methods. For example, the mean CER from the PLS method is more than twice with
investor sentiment as predictor.

Figure A5 in the Appendix shows the annualized CER for 92 factors across five shrinkage methods.
Again for each method, I sort the CERs into deciles and use different colors from dark red to dark green to
indicate their magnitude. I find that a positive relationship between CER among common factor strategies
and their RZ ¢ and Sharpe ratios. For example, the high R ¢ and Sharpe ratios for the timed size and gross

profitability factors turn into large economic value, while the value and timed 12-month momentum strategy

have subtle economic gains.

5.4.3 Optimal timing portfolio and the stochastic discount factor

Previous analyses suggest that the shrinkage methods improve factor predictability over the PC portfolio
approach. I examine whether this improvement has any implications for the performance of the optimal
timing portfolio and the variance of the implied SDF. In particular, I use the return forecasts of individual

factors from the shrinkage methods to estimate the expected returns for the PC portfolios, and construct the

22



optimal anomaly timing portfolio as in Section 4.3. To highlight the improvement in the PC return forecasts,

I adopt a homogeneous covariance matrix assumption. Consequently, the optimal weight is estimated as

dare = (V) RyMKTRR 1, PACfHa c PACfH]/’ (14)
where 3 is the estimated covariance matrix of forecast errors using the first half of the sample with historical
means as return forecasts, R KTRF,t+1 is the historical mean of the market factor, PACiC 41 is the kth PC
return forecast, and +y is a risk aversion parameter equal to one.

Table 8 shows the performance of the optimal anomaly timing portfolio under this approach. For com-
parison, the first row shows the average performance under the PC portfolio approach across nine predictors,
and the subsequent rows show the performance for five shrinkage methods. Column (1) shows that the Sharpe
ratio of the optimal timing portfolio improves when using return forecasts from shrinkage methods. Simple
methods such as FC' and DMSPE can improve the Sharpe ratio by about 30%. Column (2) shows that
this improvised method of estimating PC’s expected returns delivers substantial information ratio. There is
also evidence of larger economic gains in Column (3). Finally, the variance of the implied SDF varies across

methods with advanced techniques such as PLS producing more volatile SDF.

5.5 Robustness check
5.5.1 Choice of estimation designs

To address concerns that different training windows or sample-split points can affect the out-of-sample
predictive performance (e.g., Inoue, Jin, and Rossi, 2017), I repeat the out-of-sample tests using the shrinkage
methods with two choices of initial training periods: 240 and 360 months. Table A6 Panels A and B report the
results. Using 240 months as the initial training sample does not change the original results significantly. The
mean R?)S is between 0.65% and 1.15%. The total Rzos can be as high as 1.35%. The predictive performance
slightly decreases when I use 360 months as the initial training window. However, the evidence in favor of
factor return predictability remains clear.

I also perform the out-of-sample tests using the rolling-window estimation scheme. I use the first half of
the data as the initial training sample, and use this window as the rolling window. The predictive ability is
strong for the FC' and PCR methods. For example, the total R% ¢ under the FC' and PCR methods is 0.75%
and 0.82%, respectively. The PLS method exhibits larger decrease in performance. Nevertheless, the total
R2% s remains high at 0.34%.
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5.5.2 Variable exclusion and inclusion

The predictive ability of the shrinkage approach can rely on a few predictor variables. To assess how each of
six predictors affects the predictive performance, I repeat the out-of-sample tests in Section 5.2 but exclude
a predictor each time. I adopt the same expanding window estimation design from Section 5.2. Table A7 in
the Appendix reports the results. Panel A reports the mean and the total RZ g, while Panels B and C report
the annualized mean (median) Sharpe ratios and CER, respectively. When I remove all five components of
SENT, the PCR and the PLS methods have weaker performance. These results suggest that SENT has
a significant contribution to predicting factor returns. Nevertheless, simple combination methods (FC' and
DMSPE) still provide strong evidence. For example, the total R3¢ under the FC method when removing
SENT is still 0.66%, and the mean Sharpe ratio across timed strategies is 0.23.

Finally, I examine whether macroeconomic variables affect the performance of the shrinkage methods. I
use 14 economic variables from Goyal and Welch’s (2008) study.'® I repeat the out-of-sample tests using the
same expanding window estimation design by adding one of 14 variables to the set of the original predictors
each time. I also examine an extreme case when I add all 14 variables. Table A8 reports the mean and
the median R%) g across the cases for all five shrinkage methods. Most results do not change significantly
from the base case. However, there is a considerable decrease when I add all 14 variables to my original set
of predictors. For example, the total R2O g under the FC' method reduces from 0.60% in the base case to
0.42%. This result implies that the macroeconomic variables bring noise to the forecasting of factor returns.
Nevertheless, I still find strong evidence in favor of predictability from the more advanced techniques such

as PCR.

6 Conclusions

The predictability of factor returns has strong implications for both asset pricing research and industry
applications, leading to a growing search among academics to find variables that predict factor returns. Most
studies use the conventional predictive regression approach to document evidence of predictability, while
recent papers avoid predicting many factors by focusing on predicting PC portfolio returns. Regardless of
the approach, most studies differ in their choices about test factor, predictor variable, sample period, return
horizon, and estimation design. Compounded by concerns of consistent out-of-sample performance, results
from prior studies create a difficulty to draw a broad conclusion about the predictive ability of prior variables.

Using a broad sample of 92 equity factors and nine prominent predictors of factor returns, I do not find

systematic evidence in favor of factor return predictability. The out-of-sample predictive ability is weak and

161 collect data on these variables from https://sites.google.com/view/agoyal145. I thank Amit Goyal for making the data
available.
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even non-existent for most predictors under the conventional predictive regression approach. The evidence re-
mains weak under the PC portfolio approach in which factor returns share common structures. I attribute the
poor out-of-sample performance of these two approaches to model instabilities, and find evidence consistent
with this explanation.

I explore several shrinkage techniques that combine signals from all predictors to mitigate the impact of
structural instability. I find more consistent evidence in favor of predictability across the methods. I also find
that the predictability exists in all factor categories. Moreover, the strong predictability routinely translates
into significant improvement in the performance of factor timing portfolios. Taken as a whole, the shrinkage

approach offers a conclusive evidence for factor timing.
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Figure 1. Factor prediction with principal component portfolio approach: Out-of-sample R?

This figure summarizes the distribution of the R2OS from the out-of-sample tests of factor returns under the principal component
(PC) portfolio approach. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the fac-
tors is in Table A1 in the Appendix. The nine predictors are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio
(IND.BM), Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1), 12-month momentum (MOM12), Volatility
(VOL), Characteristic spread (CS), Long-run reversal (LRREV), and Sentiment index (SENT). For SENT, I reconstruct the
series for each period from its underlying five components using the same recursive design of the out-of-sample tests. Predictor
construction detail is described in Table A2 in the Appendix. I obtain a PC-based return forecast for factor i as

5
. —k
— ~k
Rit11 = E wi,t+1PCt+17
k=1

where R,-,H_l and 1/365 +1 are the excess return forecasts of factor portfolio ¢ and PC portfolio k in month ¢ + 1, respectively.
oﬁﬁk,tJrl is the loading of factor portfolio 7 on PC portfolio k£ from the PC estimation. Panels A, B, and C show the mean,
the median, and the total R%S across 92 factors, respectively. The forecasting designs are split-sample (black bar), expanding-
window (red bar), and rolling-window (blue bar). For all designs, I use an initial training window equal to the first half of the
sample (1970:01 - 1995:12). For the split-sample design, I use the parameter estimates to construct forecasts for the second half.
For expanding- (rolling-)window design, I expand (roll) the training window each month to update parameter estimates and
construct forecasts for the rest of the sample. The rolling window is equal to the initial training window. The out-of-sample
evaluation period is from 1996:01 to 2021:12. I calculate Campbell and Thompson’s (2008) RQOS using Equation 8. The total
R?DS is calculated using Equation 9. I use Clark and West’s (2007) procedure for the R?)S tests.
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Figure 2. Factor prediction with principal component portfolio approach: Number of significant predictions
This figure shows the number of significant predictions from the out-of-sample tests of factor returns under the principal
component (PC) portfolio approach. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional
detail on the factors is in Table Al in the Appendix. The nine predictors are Book-to-market ratio (BM), Industry-adjusted
book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1), 12-month momentum
(MOM12), Volatility (VOL), Characteristic spread (CS), Long-run reversal (LRREV), and Sentiment index (SENT). For
SENT, I reconstruct the series for each period from its underlying five components using the same recursive design of the
out-of-sample tests. Predictor construction detail is described in Table A2 in the Appendix. I obtain a PC-based return forecast
for factor ¢ as

5

o]
. _ ok —k
Rit11 = Zwi,t+1PCt+17
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~ —k
where R; ;11 and PCy,, are the excess return forecasts of factor portfolio i and PC portfolio k in month ¢ + 1, respectively.
d}fk 1 is the loading of factor portfolio ¢ on PC portfolio k from the PC estimation. Panels A and B show the number of factors

with significant predictions based on R2O g at 5% and 1% levels, respectively. The forecasting designs are split-sample (black
bar), expanding-window (red bar), and rolling-window (blue bar). For all designs, I use an initial training window equal to the
first half of the sample (1970:01 - 1995:12). For the split-sample design, I use the parameter estimates to construct forecasts for
the second half. For expanding- (rolling-)window design, I expand (roll) the training window each month to update parameter
estimates and construct forecasts for the rest of the sample. The rolling window is equal to the initial training window. The
out-of-sample evaluation period is from 1996:01 to 2021:12. I calculate Campbell and Thompson’s (2008) RQOS using Equation
8. I use Clark and West’s (2007) procedure for the RZ ¢ tests.

Panel A: Number of factors with 5%-significant RzoS

BM IND.BM  ISSREP MOM1 MOM12 VOL cs LRREV SENT

Panel B: Number of factors with 1%-significant RzoS

BM IND.BM  ISSREP MOM1 MOM12 VOL cs LRREV SENT

Estimation scheme . Half—split. Expanding . Rolling

30



Figure 3. Factor prediction with principal component portfolio approach: Optimal anomaly timing portfolio
This figure shows performance of the optimal anomaly timing portfolio under the principal component (PC) portfolio ap-
proach relative to the optimal factor investing portfolio across three estimation designs. The sample period is from 1970:01
to 2021:12. The number of factors is 92. Additional detail on the factors is in Table A1l in the Appendix. The nine predic-
tors are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP),
One-month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run
reversal (LRREYV), and Sentiment index (SENT). For SENT, I reconstruct the series for each period from its underlying five
components using the same recursive design of the out-of-sample tests. Predictor construction detail is described in Table A2
in the Appendix. I obtain the optimal portfolio based on the first five PC portfolios with anomaly timing and the market
factor without timing. The optimal weight is estimated as ('yf]t)_lﬁt, where 3 is the estimated covariance matrix of forecast
errors, R; is the forecast returns, and + is a risk aversion parameter equal to one. Panels A and B show the relative change (in
percentage) in annualized Sharpe ratio and Certainty Equivalent Return (CER), respectively. Panel C shows the relative change
(in percentage) in the annualized variance of the stochastic discount factor (SDF). The SDF is estimated as wéf]twt, where w
is the optimal weight. The forecasting designs are split-sample (black bar), expanding-window (red bar), and rolling-window
(blue bar). For all designs, I use an initial training window equal to the first half of the sample (1970:01 - 1995:12). For the
split-sample design, I use the parameter estimates to construct forecasts for the second half. For expanding- (rolling-)window
design, I expand (roll) the training window each month to update parameter estimates and construct forecasts for the rest of
the sample. The rolling window is equal to the initial training window. The out-of-sample evaluation period is from 1996:01 to
2021:12.
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Figure 4. Factor prediction with shrinkage methods: Out-of-sample R?

This figure shows the out-of-sample performance of factor prediction under the shrinkage methods. Each plot shows the RQO g in
percent, for factors in one of six categories: Momentum, Value, Investment, Profitability, Intangibles, and Trading frictions. I use
the classification scheme of Hou et al. (2020) to classify the factors. The sample period is from 1970:01 to 2021:12. The number
of factors is 92. Additional detail on the factors is in Table A1l in the Appendix. The predictors are are Book-to-market ratio,
Industry-adjusted book-to-market ratio, Issuer-repurchaser spread, One-month momentum, 12-month momentum, Volatility,
Characteristic spread, Long-run reversal, and five components of Sentiment index. Predictor construction detail is described
in Table A2 in the Appendix. The shrinkage methods include forecast combination (FC'), discount mean square of prediction
errors (DMSPE), predictor average (Average), principal component regression (PCR), and partial least squares (PLS). FC is
the equal-weighted average of univariate predictive regression forecasts from all predictors. DMSPE is the weighted average
of univariate predictive regression forecasts, in which forecasts that have lower prediction errors over the holdout period have
greater weight. Average is the univariate predictive regression forecast based on the cross-sectional average of all predictors.
PCR (PLS) is a univariate predictive regression forecast based on the first principal component (return-relevant component) of
all predictors. I adopt an expanding-window design for the out-of-sample tests. For F'C, Average, PCR, and PLS, I use an initial
training window equal to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that
requires holdout periods, I use an initial training window from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to
1995:12) as the holdout period to estimate forecasts for 1996:01. The holdout window length is the same for subsequent forecasts.
I expand the training window each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period
is from 1996:01 to 2021:12. I calculate Campbell and Thompson’s (2008) R 4 using Equation 8. I use Clark and West’s (2007)

procedure for the RQOS tests.
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Table 1. Predictor variables in the literature

The table lists the variables that have been shown to be good predictors of factor returns. Columns (1) and (2) show the
variables and studies that use them, respectively. Columns (3) and (4) report the sample period and number of test factors
used in each study, respectively. Column (5) reports the return horizon in each study. Column (6) shows whether or not a study
uses out-of-sample tests. Panel A shows single time-series variables (i.e., common predictors for all factors), and Panel B shows
factor-specific variables (i.e., one predictor for each factor).

No. Variable Study Sample period  Number of test portfolios — Horizon Out of sample (Yes/No)
& @) 3) () (5) ©)
Panel A: Single time-series variables
1 Sentiment index Stambaugh et al. (2012) 1965-2008 11 Monthly N
2 Aggregate mutual fund flows Akbas et al. (2015) 1994-2012 11 Monthly N
Panel B: Factor-specific variables

1 Book-to-market ratio Cohen et al. (2003) 1938-1997 1 Annual N
Haddad et al. (2020) 1974-2017 50 Monthly Y

Baba-Yara et al. (2021) 1972-2017 6 Monthly, Annual Y

2 Industry adjusted book-to-market ratio ~ Baba-Yara et al. (2021) 1972-2017 1 Monthly, Annual Y
3 Issuer-repurchaser spread Greenwood and Hanson (2012) 1962-2006 11 Monthly N
4 Time-series momentum Moskowitz et al. (2012) 1965-2009 58 Monthly N
5 Volatility Moreira and Muir (2017) 1926-2015 9 Monthly N
6 Factor momentum Gupta and Kelly (2019) 1965-2017 65 Monthly N
Ehsani and Linnainmaa (2022) 1963-2019 22 Monthly N

7 Characteristic spread Kelly et al. (2023) 1963-2019 138 Monthly Y
Kagkadis et al. (2023) 1970-2019 72 Monthly Y

33



Table 2. Predictive regressions: Out-of-sample results

The table summarizes the out-of-sample performance of factor return prediction using the conventional predictive regression
approach. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table
A1l in the Appendix. The nine predictors are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM),
Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL),
Characteristic spread (CS), Long-run reversal (LRREV), and Sentiment index (SENT). For SENT, I reconstruct the series for
each period from its underlying five components using the same recursive design of the out-of-sample tests. Predictor construction
detail is described in Table A2 in the Appendix. I adopt an expanding-window estimation design for the out-of-sample tests.
I use an initial training window equal to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01, and
expand the training window each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period
is from 1996:01 to 2021:12. Panel A reports the out-of-sample statistics across the factors. Columns (1) to (4) report the mean
(standard deviation), the 25th percentile, the median, and the 75th percentile R2OS' Column (5) reports the total R2OS across
all factors. Column (6) reports the number of factors that have positive R% 4 and the numbers in brackets indicate those with
statistical significance (at least at the 10% level). Panel B reports the predictive performance across factor categories. I use
the classification scheme of Hou et al. (2020) to classify each factor into one of six categories: Momentum, Value, Investment,
Profitability, Intangibles, and Trading frictions. The number in bracket next to each category heading is the total number of
factors in that category. I report the total R% g (in percent) across the factors in each category, and the numbers in brackets
indicate positive and statistically significant (at least at the 10% level) R2OS' I calculate Campbell and Thompson’s (2008) R2OS
using Equation 8. The total RQOS is calculated using Equation 9. I use Clark and West’s (2007) procedure for the R?DS tests.

Panel A: Out-of-sample performance across individual factors

Predictor R% ¢ (%) Total R% ¢ > 0% [Sig.]
Mean (SD) P25 Median P75 (%)
0 ) 3) (4) (5) (©)
BM -0.10 (0.96) -0.72 -0.32 0.45 0.17 33 [23]
IND.BM -0.12 (1.09) -0.76 -0.30 0.43 0.18 34 [21]
ISSREP -0.13 (0.74) -0.46 -0.25 0.11 -0.17 30 [17]
MOM1 0.17 (0.99) -0.43 -0.09 0.65 0.18 42 [25]
MOM12 0.03 (0.79) -0.34 -0.15 0.32 -0.01 36 [17]
VOL -0.60 (0.86) 112 -0.66 -0.25 -0.55 16 [5]
CS -0.06 (0.51) -0.31 -0.09 0.21 0.00 35 [11]
LRREV -0.16 (0.63) -0.40 -0.14 0.00 -0.15 22 [8]
SENT 0.52 (1.15) -0.17 0.09 1.06 0.68 56 [26]
Panel B: Out-of-sample performance across factor categories
Predictor Total R%¢ (%) [REg > 0% & Sig.]
Momentum [6]  Value [20] Investment [18]  Profitability [16] Intangibles [13]  Trading frictions [19]
BM 0.34 [3] 0.16 [7] 0.22 [3] -0.20 [2] 0.63 [1] 0.65 [7]
IND.BM 0.36 [2] 0.21 [7] 0.14 [3] -0.25 [3] 0.75 2] 0.68 [4]
ISSREP -0.32 [0] -0.41 [3] 0.21 [3] 0.04 [4] 0.1 [3] 0.07 [4]
MOM1 -0.48 [0] 0.24 [7] -0.27 [0] 1.26 [12] 0.06 [2] 0.16 [4]
MOM12 -0.21 [0] 0.45 [5] 0.12 [1] 0.18 [2] 0.26 [5] -0.20 [4]
VOL 0.40 1] 0.42 2] -0.52 [0] -1.31 [0] -0.74 0] 0.63 2]
cs -0.08 [0] 0.12 [4] -0.05 [3] -0.08 [1] -0.42 [0] 0.14 [3]
LRREV -0.06 [1] -0.35 [2] -0.22 [0] -0.25 1] -0.29 [1] 0.04 [3]
SENT -0.05 [0] 0.25 [4] 0.25 [3] 1.89 [10] 0.54 [2] 0.91 [7]
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Table 3. Principal component portfolio approach: Out-of-sample results with split-sample specification

The table summarizes the out-of-sample performance of factor return prediction using the principal component (PC) portfolio
approach. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table
A1 in the Appendix. The predictor is Book-to-market ratio (BM). I adopt a split-sample design for the out-of-sample tests. I
estimate parameters using the first half of the sample (1970:01 - 1995:12), and use the estimates to construct forecasts for the
second half. The out-of-sample evaluation period is from 1996:01 to 2021:12. Panel A reports the results on the predictability
for the first five PC portfolios from the univariate predictive regression

PCf+1 = )‘}8 + )‘Ichf +€f+1,

where PC‘f_H is the excess return of PC portfolio k (k = 1,5) in month ¢+ 1, and X is the book-to-market ratio of PC portfolio
k in month t¢. I obtain the PC portfolio returns and their predictor using the eigenvectors of the covariance matrix of factor
returns. Rows (1) and (2) report the predictive coefficient estimate A; and t-statistic (in brackets), respectively. Rows (3) and
(4) report the full-sample and out-of-sample monthly R?, respectively. Panel B reports the results on the predictability for 92
factors under the conventional predictive regressions and the PC portfolio approach. I obtain a PC-based return forecast for
factor i as

5
N _ B ==k
Riy1 = § wi 1 PCiya,
k=1

where R,-,H_l and Féf +1 are the excess return forecasts of factor portfolio ¢ and PC portfolio k in month ¢ + 1, respectively.

‘Dﬁk,ﬂrl is the loading of factor portfolio 4 on PC portfolio k& from the PC estimation. Columns (1) and (2) report the mean

(standard deviation), and the median R2 g, respectively. Column (3) reports the total RZ . Column (4) reports the number

of RQOSS that are non-negative, and statistically significant at the 5% level in brackets. I calculate Campbell and Thompson’s

5;008) R2 4 using Equation 8. The total RZ ¢ is calculated using Equation 9. I use Clark and West’s (2007) procedure for the
Og tests.

Panel A: Prediction of five largest equity components

PCi1 PC2 PC3 PC4 PC5
(1) 2) 3) (4) (5)
Own BM 1.25 2.63 0.44 -0.35 -0.48
t-statistic [1.06] [2.74] [0.89] :0.61] [0.76]
R? (%) 1.00 2.33 0.16 0.08 0.18
R (%) 1.47 2.46 -0.43 -0.24 -0.62
Panel B: Out-of-sample prediction across individual factors
Method R% ¢ (%) Total R%¢ (%) R ¢ > 0% [5%-Sig.]
Mean (SD) Median

(1) (2) 3) (4)
(1) (2) 3) (4)
Predictive regression ~ -0.10 (1.59) 0.03 0.23 47 [21]
PC portfolio 0.64 (2.24) 0.99 1.15 67 [50]
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Table 4. Factor prediction with shrinkage methods: Out-of-sample performance

The table summarizes the out-of-sample performance of factor return prediction using the shrinkage methods. The sample
period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table Al in the Appendix.
The predictors are are Book-to-market ratio, Industry-adjusted book-to-market ratio, Issuer-repurchaser spread, One-month
momentum, 12-month momentum, Volatility, Characteristic spread, Long-run reversal, and five components of Sentiment indez.
Predictor construction detail is described in Table A2 in the Appendix. The shrinkage methods include forecast combination
(FC), discount mean square of prediction errors (DMSPE), predictor average (Average), principal component regression (PCR),
and partial least squares (PLS). FC is the equal-weighted average of univariate predictive regression forecasts from all predictors.
DMSPE is the weighted average of univariate predictive regression forecasts, in which forecasts that have lower prediction errors
over the holdout period have greater weight. Average is the univariate predictive regression forecast based on the cross-sectional
average of all predictors. PCR (PLS) is a univariate predictive regression forecast based on the first principal component (return-
relevant component) of all predictors. I adopt an expanding-window design for the out-of-sample tests. For F'C, Average, PCR,
and PLS, I use an initial training window equal to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for
1996:01. For DMSPE that requires holdout periods, I use an initial training window from 1970:01 to 1985:12, and the subsequent
120 months (1986:01 to 1995:12) as the holdout period to estimate forecasts for 1996:01. The holdout window length is the
same for subsequent forecasts. I expand the training window each month to estimate forecasts for the rest of the sample. The
out-of-sample evaluation period is from 1996:01 to 2021:12. Panel A reports the results for the shrinkage methods. Columns
(1) to (4) report the mean (standard deviation), the 25th percentile, the median, and the 75th percentile of RZ . Column (5)
report the total R%S across all 92 factors. Column (6) reports the number of R%Ss that are non-negative, and statistically
significant at the 10% (5%) level in brackets (parentheses). For comparison, Panel B reports the lowest and the highest values
of the column statistics across all predictors for the conventional predictive regression and the PC portfolio approach using the
same estimation design. I calculate Campbell and Thompson’s (2008) R 05 using Equation 8. The total R%)S is calculated using
Equation 9. I use Clark and West’s (2007) procedure for the R Og tests.

Method R% ¢ (%) Total RS 4 (%) R4 >0
Mean (SD) P25 Median P75 [10%—Sig.] (5%—Sig.)
(1) (2) ®3) (4) ®) (6)

Panel A: Summary of predictive performance for the shrinkage methods

FC 052 (0.50) 0.15 045 085 0.60 80 [52] (38)
DMSPE 053 (0.51) 015 046  0.86 0.61 81 [51] (38)
Average 052 (1.06) -0.34 027 124 0.58 55 [43] (30)
PCR 1.08 (1.49) 007 089  1.95 1.30 70 [58] (39)
PLS 052 (2.23) -0.87 043 195 0.91 52 [48] (42)

Panel B: Summary of predictive performance for the conventional and PC portfolio methods

Predictive regression

Lowest 0.60 (0.51) -1.12  -0.66  -0.25 -0.55 16 [5] (1)

Highest 052 (1.15) -0.17  0.09  1.06 0.68 56 [26] (22
PC

Lowest -0.60 (0.78) -1.11  -0.58  0.08 -0.43 26 [7] (5)

Highest 0.60 (1.78) -0.20  0.56  1.29 0.63 61 [42] (29)
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Table 5. Direct comparison

The table report the number of factors that have higher out-of-sample R? under the shrinkage methods than the conventional
and principal component (PC) portfolio approach. The shrinkage methods include forecast combination (FC), discount mean
square of prediction errors (DMSPE), predictor average (Average), principal component regression (PCR), and partial least
squares (PLS). The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in
Table Al in the Appendix. The predictors are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM),
Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL),
Characteristic spread (CS), Long-run reversal (LRREV), and Sentiment index (SENT). For SENT, I use its underlying five
components for the shrinkage methods. For the conventional and principal-component approach, I reconstruct the series for
each period from the five components using the same recursive design of the out-of-sample tests. Predictor construction detail
is described in Table A2 in the Appendix. I adopt an expanding-window design for the out-of-sample tests. For FC, Average,
PCR, and PLS, I use an initial training window equal to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for
1996:01. For DMSPE that requires holdout periods, I use an initial training window from 1970:01 to 1985:12, and the subsequent
120 months (1986:01 to 1995:12) as the holdout period to estimate forecasts for 1996:01. The holdout window length is the
same for subsequent forecasts. I expand the training window each month to estimate forecasts for the rest of the sample. The
out-of-sample evaluation period is from 1996:01 to 2021:12. Panels A and B report the comparison results for the conventional
and PC approach, respectively. I calculate Campbell and Thompson’s (2008) R?) g using Equation 8. The numbers in brackets
are the p-value from a one-sided binomial test with the null hypothesis that the proportion of reported factors is less than half.

Predictor FC DMSPE  Average PCR PLS
(1) (2) (3) (4) (5)

Panel A: Predictive regression

BM 5[0.00] 75[0.00] 75[0.00] 79 [0.00] 64 [0.00]
IND.BM 2 [0.00] 72 [0.00] 7 [0.00] 78[0.00] 62 [0.00]
ISSREP 8 [0.00] 78 [0.00] 410.00] 70 [0.00] 50 [0.23]
MOM1 5 [0.00] 68 [0.00] 4 10.06] 65 [0.00] 47 [0.46]
MOM12 71 [0.00] 71 [0.00] 2 [0.00] 66 [0.00] 51 [0.17]
VOL 5 [0.00] 85 [0.00] 5[0.00] 78 [0.00] 63 [0.00]
CS 8 [0.00] 77 [0.00] 0 [0.00] 73 [0.00] 59 [0.00]
LRREV 8 0.00] [O 00] 2 [0.00] 71[0.00] 56 [0.02]
SENT 6 [0.02] 7[0.01] 45[0.62] 63 [0.00] 44 [0.70]
Panel B: Principal-component approach
BM 7 [0.01] 7[0.01] 57 [0.01] 61 [0.00] 49 [0.30]
IND.BM 7 [0.01] 54 [0.06] 410.06] 59 [0.00] 49 [0.30]
ISSREP 3 10.00] 3 [0.00] 4 10.00] 64 [0.00] 56 [0.02]
MOM1 1[0.17] 53 [0.09] 6 [0.02] 65 [0.00] 52 [0.13]
MOM12 64 [0.00] 65 [0.00] 9 [0.00] 66 [0.00] 55 [0.04]
VOL 0 [0.00] 80 [0.00] 9 [0.00] 72 [0.00] 64 [0.00]
CS 5 [0.00] 4 [0.00] 6 [0.00] 68 [0.00] 59 [0.00]
LRREV 0 [0.00] 72 [0.00] 9[0.00] 67 [0.00] 54 [0.06]
SENT 9 [0.30] 8 [0.38] 5[0.62] 58 [0.01] 43 [0.77]
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Table 6. Distribution of Sharpe ratios across factor timing strategies

The table reports the distribution of annualized Sharpe ratio from timed factor strategies that use return forecasts from
the shrinkage methods, the conventional predictive regressions, and the principal-component (PC) approach. The shrinkage
methods include forecast combination (F'C), discount mean square of prediction errors (DMSPE), predictor average (Average),
principal component regression (PCR), and partial least squares (PLS). The sample period is from 1970:01 to 2021:12. The
number of factors is 92. Additional detail on the factors is in Table Al in the Appendix. The predictors are Book-to-market
ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-month momentum
(MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run reversal (LRREV), and
Sentiment index (SENT). For SENT, I use its underlying five components for the shrinkage methods. For the conventional
and principal-component approach, I reconstruct the series for each period from the five components using the same recursive
design of the out-of-sample tests. Predictor construction detail is described in Table A2 in the Appendix. I adopt an expanding-
window design to obtain return forecasts. For FC, Average, PCR, and PLS, I use an initial training window equal to the first
half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout periods, I use an
initial training window from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the holdout period to
estimate forecasts for 1996:01. The holdout window length is the same for subsequent forecasts. I expand the training window
each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12.
The optimal weight for factor timing strategy ¢ in month ¢ is estimated as ]%th 1/ (7&1'2,1& 41); where Rz’”t 11 is the return forecast

using forecasting method m, 67141 is the sample variance using all data up to month ¢, and ~ is a risk aversion parameter.
Panel A reports the distribution that use the shrinkage methods to obtain return forecasts. Row (1) reports the results from
factor investing, in which the optimal weight uses the historical mean as return forecast. Columns (1) to (4) report the mean,
the standard deviation (SD), the 25th percentile, the median, and the 75th percentile Sharpe ratio, respectively. Panel B reports
the mean and median Sharpe ratio that use the conventional predictive regressions (Columns (1) and (2)), and the PC approach
(Columns (3) and (4)) to obtain return forecasts. I use a risk aversion parameter of one, and impose a leverage constraint that
the absolute weight on the factor portfolio is less than or equal to two.

Panel A: Shrinkage methods

Method Mean SD P25 Median P75
(1) (2) (3) (4) (5)
Factor investing 0.11 0.25 -0.02 0.09 0.25
FC 0.23 0.20 0.09 0.23 0.37
DMSPE 0.23 0.20 0.10 0.23 0.36
Average 0.22 0.20 0.08 0.22 0.34
PCR 0.28 0.23 0.11 0.28 0.43
PLS 0.27 0.24 0.09 0.27 0.48
Panel B: Predictive regression and PC approach
Predictor Predictive regression PC
Mean Median Mean Median
(1) (2) (3) (4)
BM 0.16 0.18 0.15 0.17
IND.BM 0.16 0.16 0.13 0.16
ISSREP 0.16 0.13 0.06 0.05
MOM1 0.22 0.21 0.24 0.21
MOM12 0.18 0.16 0.13 0.12
VOL 0.13 0.10 0.01 0.01
CS 0.15 0.14 0.03 0.01
LRREV 0.13 0.11 0.07 0.05
SENT 0.22 0.17 0.18 0.18
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Table 7. Distribution of Certainty Equivalent Return across factor timing strategies

The table reports the distribution of annualized (in percent) Certainty Equivalent Return (CER) from timed factor strategies
that use return forecasts from the shrinkage methods, the conventional predictive regressions, and the principal-component
(PC) approach. The shrinkage methods include forecast combination (FC), discount mean square of prediction errors (DMSPE),
predictor average (Average), principal component regression (PCR), and partial least squares (PLS). The sample period is from
1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table Al in the Appendix. The predictors
are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-
month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run reversal
(LRREV), and Sentiment index (SENT). For SENT, I use its underlying five components for the shrinkage methods. For the
conventional and principal-component approach, I reconstruct the series for each period from the five components using the
same recursive design of the out-of-sample tests. Predictor construction detail is described in Table A2 in the Appendix. I adopt
an expanding-window design to obtain return forecasts. For FC, Average, PCR, and PLS, I use an initial training window
equal to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout
periods, I use an initial training window from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the
holdout period to estimate forecasts for 1996:01. The holdout window length is the same for subsequent forecasts. I expand
the training window each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period is from
1996:01 to 2021:12. The optimal weight for factor timing strategy ¢ in month ¢ is estimated as R%Jrl/(’y&f’wl), where RZ;JFI
is the return forecast using forecasting method m, 61-27t+1 is the sample variance using all data up to month ¢, and ~ is a risk
aversion parameter. The CER for factor strategy i is estimated as R; — (7y/ 2)&2.2, where R; and 612 are the average return and
sample variance of the timed strategy during the evaluation period, respectively. Panel A reports the distribution that use the
shrinkage methods to obtain return forecasts. Row (1) reports the results from factor investing, in which the optimal weight uses
the historical mean as return forecast. Columns (1) to (4) report the mean, the standard deviation (SD), the 25th percentile,
the median, and the 75th percentile CER, respectively. Panel B reports the mean and median CER that use the conventional
predictive regressions (Columns (1) and (2)), and the PC approach (Columns (3) and (4)) to obtain return forecasts. I use a
risk aversion parameter of one, and impose a leverage constraint that the absolute weight on the factor portfolio is less than or
equal to two.

Panel A: Shrinkage methods

Method Mean SD P25 Median P75
(1) (2) (3) (4) (5)
Factor investing 0.40 5.40 -3.04 -0.67 2.98
FC 2.39 5.13 -1.16 1.85 5.89
DMSPE 2.40 5.14 -1.26 1.96 5.36
Average 2.00 5.64 -1.68 2.17 5.71
PCR 4.00 6.61 -0.86 3.11 8.57
PLS 3.64 7.29 -2.11 3.43 9.41
Panel B: Predictive regression and PC approach

Predictor Predictive regression PC

Mean Median Mean Median

1) (2) (3) (4)
BM 0.52 0.34 0.28 -0.16
IND.BM 0.60 0.52 0.04 0.56
ISSREP 0.35 -0.12 -1.85 -2.17
MOM1 1.71 1.77 2.56 1.63
MOM12 0.72 0.57 -0.61 -0.59
VOL -0.62 -1.01 -2.75 -3.81
CS 0.39 -0.08 -1.85 -2.51
LRREV 0.22 -0.63 -0.66 -0.82
SENT 1.97 0.93 1.49 0.97
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Table 8. Performance of anomaly timing portfolios

The table compares performance of the optimal anomaly timing portfolio under the principal component (PC) portfolio approach
across nine predictors and the shrinkage methods. The sample period is from 1970:01 to 2021:12. The number of factors is
92. Additional detail on the factors is in Table Al in the Appendix. The nine predictors are Book-to-market ratio (BM),
Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1), 12-
month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run reversal (LRREV), and Sentiment index
(SENT). For SENT, 1 reconstruct the series for each period from its underlying five components using the same recursive
design of the out-of-sample tests. Predictor construction detail is described in Table A2 in the Appendix. I obtain the optimal
portfolio based on the first five PC portfolios with anomaly timing and the market factor without timing. The optimal weight
is estimated as ('yf])_lf%t, where 3 is the estimated covariance matrix of forecast errors, R; is the forecast returns, and ~y
is a risk aversion parameter equal to one. The first row reports the average performance across all nine predictors that use
the PC approach. For the shrinkage methods, expected PC returns are estimated as the loading-weighted forecast returns of
individual factor portfolios. The shrinkage methods include forecast combination (FC'), discount mean square of prediction
errors (DMSPE), predictor average (Average), principal component regression (PCR), and partial least squares (PLS). I adopt
an expanding-window design to obtain return forecasts. For FC, Average, PCR, and PLS, I use an initial training window equal
to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout periods,
I use an initial training window from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the holdout
period to estimate forecasts for 1996:01. The holdout window length is the same for subsequent forecasts. I expand the training
window each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to
2021:12. Columns (1), (2), (3), and (4) report the annualized Sharpe ratio, Information ratio, annualized Certainty Equivalent
Return (in percentage), and annualized average of stochastic discount factor. Information ratio is obtained versus the untimed
optimal portfolio , and the Fama-French five-factor model.

Method Sharpe ratio Information ratio CER Variance of SDF
(1) (2) 3) (4)

PC 0.72 -0.01 1.22 1.70

FC 0.94 0.31 1.41 1.29

DMSPE 0.93 0.28 1.43 1.31

Average 0.78 0.15 1.58 1.44

PCR 0.84 0.24 2.21 2.00

PLS 0.74 0.21 2.58 2.89
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Appendix



Figure Al. Predicting factor returns with predictive regression approach: In-sample t-statistic

This figure shows the t-statistic from the conventional predictive regressions of one-month ahead factor returns on their predic-
tors. Each plot shows the results for factors in one of six categories: Momentum, Value, Investment, Profitability, Intangibles,
and Trading frictions. 1 use the classification scheme of Hou et al. (2020) to classify the factors. The sample period is from
1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table Al in the Appendix. The nine predic-
tors are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP),
One-month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run re-
versal (LRREYV), and Sentiment index (SENT). For SENT, I use Baker and Wurgler’s (2006) full-sample orthogonalized series.
Predictor construction detail is described in Table A2 in the Appendix. For each factor and predictor, I estimate Equation 2
using the full sample of data, and record the coefficient estimate, the t-statistic and the p-value from the t-test. The colors
indicate whether the coefficient estimate is consistent in sign with original studies, and whether the estimate is statistically
significant at either of three levels (10%, 5%, or 1%). I use the Newey and West’s (1987) ¢t—statistic with a 2-year window for
the kernel.
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Figure A2. Predicting factor returns with predictive regression approach: RZOS

This figure shows the RQO g from the conventional predictive regressions of one-month ahead factor returns on their predictors.
Each plot shows the results for factors in one of six categories: Momentum, Value, Investment, Profitability, Intangibles, and
Trading frictions. I use the classification scheme of Hou et al. (2020) to classify the factors. The sample period is from 1970:01
to 2021:12. The number of factors is 92. Additional detail on the factors is in Table Al in the Appendix. The nine predictors
are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-
month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run reversal
(LRREV), and Sentiment index (SENT). For SENT, I reconstruct the series for each period from its underlying five components
using the same recursive design of the out-of-sample tests. Predictor construction detail is described in Table A2 in the Appendix.
I adopt an expanding-window estimation design for the out-of-sample tests. I use an initial training window equal to the first
half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01, and expand the training window each month to estimate
forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12. I calculate Campbell and
Thompson’s (2008) RQOS using Equation 8.
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Figure A3. Factor prediction with principal component approach: Cumulative total RZOS

This figure shows the cumulative total R?)S using two predictors under the principal component (PC) portfolio approach. The
sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table Al in
the Appendix. The two predictors are Book-to-market ratio (BM), One-month momentum (MOM1), and Volatility (VOL).
Predictor construction detail is described in Table A2 in the Appendix. Each line plots (3;SST} — EiSSEf)/EiSSTZT, where
SSE! = ¥t _ | (R;r — R; )%, SST! = £t _(Ri,r — Ri,r)?, and SSTT = £7_,(R;r — R; ;)?, with R;,,R; - and R; . the
factor i’s return, its one-month ahead return forecast, and its prevailing mean forecast, respectively. For all designs, I use an
initial training window equal to the first half of the sample (1970:01 - 1995:12). For the split-sample design, I use the parameter
estimates to construct forecasts for the second half. For expanding- (rolling-)window design, I expand (roll) the training window
each month to update parameter estimates and construct forecasts for the rest of the sample. The rolling window is equal to
the initial training window. The out-of-sample evaluation period is from 1996:01 to 2021:12. The solid, dashed, and dotted
line indicates the split-sample, recursive, and rolling window estimation design, respectively. Shaded areas denote NBER-dated
recessions.

Panel A: Book—-to—market ratio

1.0
0.5 (Recursive )
T e S, T T )
,z-"’ I Pv\.’a.*-‘.r‘ﬁ.—.."-\‘\_.'
0.0 i !
R v/
_05 -
-1.04
1995 2000 2005 2010 2015 2020

Panel B: One-month momentum

’
Vrrl S S (Recursive)
T N e Recursive
051 wnrm s o S (Reaursie)

Standardized cumulative SSE difference

0.0
_0_5_
1995 2000 2005 2010 2015 2020
Panel C: Volatility
0.5
1
f M
0.0
~0.51 | U mTeTmT T =
e e I i ()
1995 2000 2005 2010 2015 2020



Figure A4. Factor timing strategies with shrinkage methods: Sharpe ratios

This figure shows the annualized Sharpe ratio for factor timing strategies that use return forecasts from the shrinkage methods.
The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table Al in
the Appendix. The predictors are are Book-to-market ratio, Industry-adjusted book-to-market ratio, Issuer-repurchaser spread,
One-month momentum, 12-month momentum, Volatility, Characteristic spread, Long-run reversal, and five components of
Sentiment index. Predictor construction detail is described in Table A2 in the Appendix. The shrinkage methods include forecast
combination (FC), discount mean square of prediction errors (DMSPE), predictor average (Average), principal component
regression (PCR), and partial least squares (PLS). FC is the equal-weighted average of univariate predictive regression forecasts
from all predictors. DMSPE is the weighted average of univariate predictive regression forecasts, in which forecasts that have
lower prediction errors over the holdout period have greater weight. Average is the univariate predictive regression forecast
based on the cross-sectional average of all predictors. PCR (PLS) is a univariate predictive regression forecast based on the
first principal component (return-relevant component) of all predictors. I adopt an expanding-window design to obtain return
forecasts. For FC, Average, PCR, and PLS, I use an initial training window equal to the first half of the sample (1970:01 -
1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout periods, I use an initial training window from
1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the holdout period to estimate forecasts for 1996:01.
The holdout window length is the same for subsequent forecasts. I expand the training window each month to estimate forecasts
for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12. The optimal weight for factor timing
strategy ¢ in month t is estimated as R;’ft+1/(’y&f,t+1), where R is the return forecast using forecasting method m, &?,t+1
is the sample variance using all data up to month ¢, and ~y is a risk aversion parameter. The colors indicate the deciles of the
Sharpe ratio distribution across all factors within each method. I use a risk aversion parameter of one, and impose a leverage
constraint that the absolute weight on the factor portfolio is less than or equal to two.
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Figure A5. Factor timing strategies with shrinkage methods: Certainty Equivalent Returns

This figure shows the annualized Certainty Equivalent Returns (CER) for factor timing strategies that use return forecasts from
the shrinkage methods. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the
factors is in Table Al in the Appendix. The predictors are are Book-to-market ratio, Industry-adjusted book-to-market ratio,
Issuer-repurchaser spread, One-month momentum, 12-month momentum, Volatility, Characteristic spread, Long-run reversal,
and five components of Sentiment index. Predictor construction detail is described in Table A2 in the Appendix. The shrinkage
methods include forecast combination (FC'), discount mean square of prediction errors (DMSPE), predictor average (Average),
principal component regression (PCR), and partial least squares (PLS). FC is the equal-weighted average of univariate predictive
regression forecasts from all predictors. DMSPE is the weighted average of univariate predictive regression forecasts, in which
forecasts that have lower prediction errors over the holdout period have greater weight. Average is the univariate predictive
regression forecast based on the cross-sectional average of all predictors. PCR (PLS) is a univariate predictive regression forecast
based on the first principal component (return-relevant component) of all predictors. I adopt an expanding-window design to
obtain return forecasts. For F'C, Average, PCR, and PLS, I use an initial training window equal to the first half of the sample
(1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout periods, I use an initial training window
from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the holdout period to estimate forecasts for
1996:01. The holdout window length is the same for subsequent forecasts. I expand the training window each month to estimate
forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12. The optimal weight for
factor timing strategy ¢ in month ¢ is estimated as R4 / ('yé'iz,t +1), where R s the return forecast using forecasting method
m, &f,t 11 is the sample variance using all data up to month ¢, and + is a risk aversion parameter. The CER for factor strategy
i is estimated as R; — (7/2)&?, where R; and 6'1-2 are the average return and sample variance of the timed strategy during the
evaluation period, respectively. The colors indicate the deciles of the CER distribution across all factors within each method. I
use a risk aversion parameter of one, and impose a leverage constraint that the absolute weight on the factor portfolio is less
than or equal to two.
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Table Al. Firm characteristics and factor portfolios
The table summarizes the firm characteristics used to construct the long-short factor decile portfolios in the paper. The panels indicate factor categories following the classification
scheme of Hou et al. (2020). For factors that Hou et al. (2020) do not cover, * indicates a classification based on the closeness of the characteristics to other characteristics in the
category. I follow the descriptions in Hou et al. (2015) (HXZ), Kelly et al. (2019) (KPS), and Haddad et al. (2020) (HKS) in constructing the characteristics. Columns (1) and (2)
report the characteristic and their acronym used in the paper. Column (3) reports the original study. Columns (4) and (5) report the average return and Fama and French’s (1993)
3-factor alpha (annualized in percentage) for 92 equity factors from 1970:01 to 2021:12. The numbers in brackets report Newey and West’s (1987) t-statistic with a 2-year window
for the kernel. Columns (6)-(8) indicate which studies (HKS, KPS, HXZ) uses the characteristic.

Anomaly Acronym Original study Average return  FF 3-factor alpha  HKS KPS HX7Z
€] (2 3 ) (6) (6 ) (®)

Panel A: Momentum
Industry momentum INDMOM Moskowitz and Grinblatt (1999) 5.92 [2.43] 8.42 [3.22] v v
Intermediate momentum INTMOM Novy-Marx (2012) 10.78 [3.40] 13.69 [4.59] v
Price momentum (12-month prior returns) MOM12 Jegadeesh and Titman (1993) 11.80 [3.43] 17.28 [5.86] v v v
Price momentum (6-month prior returns) MOM6 Jegadeesh and Titman (1993) 8.29 [2.84] 12.49 [4.45] v v
Earnings surprise SUE Chan, Jegadeesh, and Lakonishok (1996) 3.88 [2.13] 4.34 [2.26] v v
Closeness to 52-week high W52H George and Hwang (2004) 3.41 [0.95] 11.74 [4.10] v

Panel B: Value

Cash flow-to-price CFP Lakonishok, Shleifer, and Vishny (1994) 4.60 [1.78] 2.18 [1.22] v v
Dividend yield DP Litzenberger and Ramaswamy (1979) 2.89 [1.01] 2.07 [0.96] v
Debt-to-price DTP Litzenberger and Ramaswamy (1979) -4.45 [-1.03] -10.67 [-2.50] v
Equity duration DUR Dechow, Sloan, and Soliman (2004) 4.86 [1.96] 0.89 [0.58] v v
Earnings-to-price EP Basu (1977) 3.14 [1.03] -0.75 [-0.35] v v v
Free cash flows FCF Hou, Karolyi, and Kho (2011) 4.68 [2.04] 8.18 [4.11] v
Change in gross margins minus change in salesx ~ FCS Abarbanell and Bushee (1998) 2.24 [1.12] 2.31 [1.03] v
Industry momentum-reversals INDMOMREV Moskowitz and Grinblatt (1999) 4.64 [2.30] 1.83 [0.91] v
Assets-to-market equity LEV Bhandari (1988) 2.83 [1.11] -2.93 [-1.59] v v v
Leverage* LEV2 Lewellen (2015) 2.99 [1.12] -3.68 [-2.29] v
Long-term reversal LRREV De Bondt and Thaler (1985) 4.53 [1.41] 0.01 [0.00] v v v
Momentum-reversals MOMREV Jegadeesh and Titman (1993) 4.04 [1.40] 0.69 [0.28] v
Net payout yield NOP Boudoukh, Michaely, Richardson, and Roberts (2007) 5.31 [2.04] 4.87 [2.46] v
Payout yield PAYOUT Boudoukh et al. (2007) 3.15 [1.34] 0.53 [0.24] v
Sales growth SGROWTH Lakonishok et al. (1994) 1.14 [0.62] -0.86 [-0.52] v v
Sales-to-pricex SP Barbee Jr, Mukherji, and Raines (1996) 3.65 [1.43] -1.46 [-0.85] v v
Value-momentums VALMOM Novy-Marx (2013) 7.07 [2.91] 4.97 [2.83] v
Value-momentum-profitability VALMOMPROF  Novy-Marx (2013) 7.94 [3.10] 7.63 [3.79] v
Value-profitability VALPROF Novy-Marx (2013) 6.47 [2.42] 422 [2.39] v
Book-to-market equity (annual) VALUE Fama and French (1993) 4.80 [1.55] -1.42 [-0.70] v v v

(Continued on next page)



Table A1l (continued)

Anomaly Acronym Original study Average return  FF 3-factor alpha HKS KPS HX7Z
Panel C: Investment
Operating accruals ACCRUALS Sloan (1996) 4.29 [2.96] 4.46 [2.94] v v v
Abnormal corporate investment ACI Titman, Wei, and Xie (2004) 4.02 [3.02] 3.84 [2.96] v
Cash-to-assetsx CASH Palazzo (2012) 2.71 [1.23] 4.30 [2.33] v
Composite issuance CISS Daniel and Titman (2006) 6.83 [3.32] 9.12 [5.20] v v
Growth in LTNOA GLTNOA Fairfield, Whisenant, and Yohn (2003) 0.25 [0.19] 0.77 [0.61] v
Investment-to-assets GROWTH Cooper, Gulen, and Schill (2008) 4.98 [2.12] 3.01 [1.90] v v v
Investment growth IGROWTH Xing (2008) 4.13 [2.13] 2.85 [1.67] v v
Changes in property, plant, and equipment INV Lyandres, Sun, and Zhang (2008) 3.59 [1.96] 2.90 [1.78] v v v
Investment-to-capitals INVCAP Xing (2008) 4.13 [1.49] 1.850.95] v
Inventory changes e Thomas and Zhang (2002) 4.83 [3.30] 4.61 [3.21] v
Inventory growth VG Belo and Lin (2012) 5.00 [2.75] 4.38 [2.59] v
Share issuance (annual)x NISSA Pontiff and Woodgate (2008) 3.98 [1.91] 3.19 [1.76] v
Share issuance (monthly)s* NISSM Pontiff and Woodgate (2008) 1.67 [0.97] 0.83 [0.45] v
Net operating assets NOA Hirshleifer, Hou, Teoh, and Zhang (2004) 8.41 [4.08] 9.31 [4.39] v v v
Net stock issues NSI Fama and French (2008) 7.35 [3.68] 7.91 [4.31] v
Percent operating accruals POA Hafzalla, Lundholm, and Matthew Van Winkle (2011) 4.51 [3.15] 4.47 [2.88] v
Percent total accruals PTA Hafzalla et al. (2011) 5.16 [3.67] 5.32 [3.71] v
Total accruals TA Richardson, Sloan, Soliman, and Tuna (2005) 3.22 [2.25] 1.86 [1.49] v
Panel D: Profitability
Asset turnover ATURNOVER Soliman (2008) 5.31 [2.70] 6.46 [3.29] v v v
Capital turnover CTO Haugen and Baker (1996) 3.08 [1.64] 3.97 [2.05] v v
F-score FSCORE Piotroski (2000) 6.85 [1.44] 10.88 [2.50] v v
Gross margins GMARGINS Novy-Marx (2013) 0.97 [0.54] 4.49 [2.84] v v
Consecutive quarters with earnings increases NEI Barth, Elliott, and Finn (1999) 9.68 [2.71] 13.78 [3.62] v
O-score OSCORE Dichev (1998) 1.73 [0.67] 5.91 [3.24] v
Price-to-cost margin* PCM Gorodnichenko and Weber (2016) 0.97 [0.54] 4.49 [2.84] v
Profit margin PM Soliman (2008) 0.18 [0.08] 4.74 [2.24] v
Gross profits-to-assets PROF Novy-Marx (2013) 3.63 [1.46] 7.31 [2.97] v v
Gross profits-to-book value of equity* PROF2 Ball, Gerakos, Linnainmaa, and Nikolaev (2016) 5.45 [2.23] 7.40 [2.63] v
Return on net operating assets RNA Soliman (2008) -2.41 [-1.17] 0.49 [0.27] v v
Return on assets (annual) ROAA Chen, Novy-Marx, and Zhang (2011) 3.73 [1.35] 8.42 [3.48] v v v
Return on equity (annual) ROEA Chen et al. (2011) 0.87 [0.35] 4.51 [1.88] v v v
Return on market equity* ROME Chen et al. (2011) 11.80 [3.79] 12.85 [4.52] v
Revenue surprise RS Jegadeesh and Livnat (2006) 5.80 [2.95] 8.39 [5.10] v
Taxable income-to-book income TIBI Green, Hand, and Zhang (2017) 1.28 [0.79] 2.76 [1.70] v

(Continued on next page)



Table A1l (continued)

Anomaly Acronym Original study Average return  FF 3-factor alpha HKS KPS HX7Z
Panel E: Intangibles

Advertisement expense-to-market ADM Chan, Lakonishok, and Sougiannis (2001) 2.46 [0.91] -1.91 [-0.84] v
Firm age AGE Barry and Brown (1985) 1.23 [0.33] -0.18 [-0.07] v
Accrual quality AQ Francis, LaFond, Olsson, and Schipper (2005) 2.27 [1.28] 0.41 [0.40] v
Brand capital-to-assets BCA Belo, Lin, and Vitorino (2014) 1.32 [0.57] 3.20 [1.40] v
Hiring rate HN Belo, Lin, and Bazdresch (2014) 2.55 [1.34] 1.02 [0.81] v
Organizational capital-to-assets OCA Eisfeldt and Papanikolaou (2013) 2.64 [1.34] 3.09 [2.06] v
Operating leverage OPLEV Novy-Marx (2011) 4.16 [2.19] 4.40 [2.25] v v
R&D capital-to-assets RCA Li (2011) 3.76 [1.47] 5.28 [2.36] v
R&D-to-market RDM Chan et al. (2001) 7.70 [2.95] 3.56 [1.44] v
R&D-to-sales RDS Chan et al. (2001) 2.58 [0.88] 4.73 [1.83] v
Seasonality SEASON Heston and Sadka (2010) 10.85 [3.74] 11.29 [4.11] v
SG&A-to-salessk SGA Freyberger, Neuhierl, and Weber (2020) 1.61 [0.57] 4.85 [1.92] v
Tobin’s Qx* TOBINQ Freyberger et al. (2020) 5.04 [1.59] -1.23 [-0.72] v

Panel F: Trading frictions
Total assetsx AT Gandhi and Lustig (2015) -0.48 [-0.19] -2.78 [-2.07] v
Beta arbitrage BETAARB Cooper et al. (2008) -0.64 [-0.16] 7.00 [2.65] v
Dimson’s beta BETADIM Dimson (1979) 0.83 [0.35] 4.62 [2.02] v
Market beta BETAFP Frazzini and Pedersen (2014) 1.13 [0.27] 8.50 [2.59] v v
Dollar trading volume DVOL Brennan, Chordia, and Subrahmanyam (1998) 6.13 [2.04] 2.22 [1.96] v
Tliquidity ILLIQ Amihud (2002) 6.13 [2.04] 2.22 [1.96] v
Industry relative reversals* INDRREV Da, Liu, and Schaumburg (2014) 9.08 [3.55] 5.13 [1.89] v
Industry relative reversals (low volatility)s INDRREVLV Da et al. (2014) 12.74 [5.18] 9.83 [4.34] v
Idiosyncratic volatility IVOL Ang, Hodrick, Xing, and Zhang (2006) 6.02 [1.71] 11.10 [4.67] v v v
Maximum daily return MDR Bali, Cakici, and Whitelaw (2011) 3.31 [1.03] 7.37 [3.00] v
Pricex PRICE Blume and Husic (1973) 0.24 [0.07] -7.07 [-3.26] v
1/share price RP Miller and Scholes (1982) 0.26 [0.07] -7.05 [-3.22] v
Share volumex SHVOL Datar, Naik, and Radcliffe (1998) -0.89 [-0.25] 2.41 [0.96] v
The market equity SIZE Fama and French (1992) 2.19 [0.66] -1.88 [-1.46] v v v
Bid-ask spreadx SPREAD Amihud (2002) -0.75 [-0.20] -6.35 [-2.22] v
Short-term reversal STREV Jegadeesh (1990) 3.62 [1.54] -0.35 [-0.13] v v v
Standard unexplained volumes S10AYS Garfinkel (2009) 4.67 [2.17] 4.20 [2.38] v
Share turnover TURN Datar et al. (1998) -1.99 [-0.65] 0.71 [0.32] v v
Total volatility TVOL Ang et al. (2006) 3.84 [1.03] 9.79 [3.80] v




Table A2. Predictors of factor returns

The table describes the construction of predictors of factor returns. Panel A describes five factor-specific predictors: Book-
to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-month
momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), and Long-run reversal
(LRREYV). Panel B describes the common time-series predictor for all factors: Sentiment index (SENT).

No. Predictor

Construction detail

Panel A: Factor-specific predictors

Book-to-market

1 ratio (BM)

2 Industry adjusted
book-to-market ra-

tio (IND.BM)

3 Issuer-repurchaser

spread (ISSREP)

4 One-month mo-

mentum (MOMTI)

5 12-month momen-

tum (MOM12)

The difference in natural logarithm of the book-to-market ratio between the long and the short
portfolio of a characteristic. I calculate a firm’s annual book value as in Fama and French (1992)
and its monthly market value as in Asness and Frazzini (2013). Following Haddad et al. (2020),
I calculate a portfolio’s book-to-market ratio as the sum of the book value relative to the total

market value of all firms in that portfolio.

The difference in natural logarithm of the industry-adjusted book-to-market ratio between the
long and the short portfolio of a characteristic. I calculate a firm’s annual book value as in Fama
and French (1992) and its monthly market value as in Asness and Frazzini (2013). Following
Baba-Yara et al. (2021), I subtract from the firm’s book-to-market ratio the value-weighted
average book-to-market ratio of the industry the firm belongs to. I use Fama & French 48-
industry classification and firms’ 4-digit SIC code for industry assignment. A portfolio’s industry-
adjusted book-to-market ratio is defined as the value-weighted average of the industry-adjusted

book-to-market ratio of all firms in that portfolio.

I follow Greenwood and Hanson (2012) to construct the characteristic-based issuer-repurchaser

spread for a factor portfolio as

z:j € Issuers Xj:t_ 1 o zg € Repurchasers Xj7t— 1

X
ISSREPt—l - N Issuers NRepurchasers
t—1 t—1

; (15)

where X ;1 denote firm j’s cross-sectional decile for characteristic X in year t — 1, and N¢—1
is the total number of issuers or purchasers. Greenwood and Hanson (2012) define issuers (pur-
chasers) as firms whose net stock issuance is greater than 10% (less than -0.5%) at December
of year t — 1. I follow Fama and French (2008) and define net stock issuance as the change in

log split-adjusted shares outstanding from Compustat annual file.

Following Gupta and Kelly (2019), I calculate a factor portfolio’s one-month momentum as its

return from the prior month, scaled by the prior 3-year variance of factor returns.

Following Ehsani and Linnainmaa (2022), I define a factor portfolio’s 12-month momentum as
an indicator variable that equals one if the factor portfolio’s average monthly returns over the

past 12 months is positive and zero otherwise.

(Continued on next page)
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Table A2 (continued)

No. Predictor Construction detail
6 Volatility (VOL) Following Moreira and Muir (2017), I estimate factor volatility as the realized variance of daily
factor returns in the prior month, scaled by the average of monthly variances up to the prior
month. I use the natural logarithm of volatility.
7 Characteristic Following Kelly et al. (2023), I transform each characteristic into a [-0.5,40.5] interval and
spread (CS) calculate a factor’s characteristic spread as the difference in the value-weighted characteristic
between the long and the short leg of the factor.
8 Long-run reversal Following Moskowitz et al. (2012), I calculate a factor’s long-run reversal signal as cumulative
(LRREV) returns over the past 5 years, scaled by the realized variance of the factor’s returns over the
same period.
Panel B: Single time-series predictors
9 Sentiment  index  For in-sample tests and out-of-sample tests that use a split-sample estimation design, I use

(SENT)

Baker and Wurgler (2006) full-sample orthogonalized sentiment series. For out-of-sample tests
that use either a recursive or a rolling window estimation design, I follow Huang et al. (2015)
to create look-ahead bias-free series. First, at each out-of-sample month ¢ + 1 I use the data
on five individual sentiment series (the close-end fund discount rate, the number of IPOs, the
12-month lagged first-day returns of IPOs, the 12-month lagged dividend premium, and the
equity share in new issues) from 1965:07 to only month ¢, and standardize them to have mean
of 0 and standard deviation of 1. Next, I regress each series on six macroeconomic variables (the
growth of industrial production, the growth of durable consumption, the growth of nondurable
consumption, the growth of service consumption, the growth of employment, and a dummy
variable for NBER-dated recessions) to obtain five orthogonalized series. I smooth five orthog-
onalized series with six-month average values to mitigate outliers in the individual series. For
the conventional predictive regressions and Haddad et al. (2020) principal-component portfolio
approach, I use the first principal component extracted from the five individual sentiment series
to predict factor returns for month ¢ + 1. For all shrinkage methods, I use all five individual
sentiment measures as predictors. Data on the original variables is available on Jeffrey Wurgler’s

website at https://pages.stern.nyu.edu/~jwurgler/.
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Table A3. Principal component portfolio approach: Split-sample specification with reverse samples

The table summarizes the out-of-sample performance of factor return prediction using the principal component (PC) portfolio
approach. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in
Table Al in the Appendix. The predictor is Book-to-market ratio (BM). I adopt a split-sample design for the out-of-sample
tests. I estimate parameters using half of the sample, and use the estimates to construct forecasts for the other half. Forward
(Reverse) design refers to the use of the first half (second half) of the sample for parameter estimation. Panel A reports the
results on the predictability for the first five PC portfolios from the univariate predictive regression

PCf+1 = )‘}8 + )‘Ichf +€f+1,

where PC’,Z“_,'_1 is the excess return of PC portfolio k (k = 1,5) in month ¢ + 1, and Xf is the book-to-market ratio of PC
portfolio k in month t. T obtain the PC portfolio returns and their predictor using the eigenvectors of the covariance matrix of
factor returns. Rows (1) and (2) report the predictive coefficient estimate 81 and t-statistic (in brackets), respectively. Rows
(3) reports the out-of-sample monthly R2, respectively. Panel B reports the results on the predictability for 92 factors under
the PC portfolio approach for two split-sample designs. I obtain a PC-based return forecast for factor i as

5

~ Tk —k

Rity1 = E Wi 441 PCyyqs
k=1

where Ri,t+1 and F(?fH are the excess return forecasts of factor portfolio ¢ and PC portfolio k& in month ¢ + 1, respectively.
®£k7t+1 is the loading of factor portfolio ¢ on PC portfolio k from the PC estimation. Columns (1) and (2) report the mean
(standard deviation), and the median R2 g, respectively. Column (3) reports the total RZ . Column (4) reports the number
of RQO oS that are non-negative, and statistically significant at the 5% level in brackets. I calculate Campbell and Thompson’s
(2008) R% ¢ using Equation 8. The total RZ g is calculated using Equation 9. I use Clark and West’s (2007) procedure for the

R?D g tests.

Panel A: Prediction of five largest equity components
PC1 PC2 PC3 PC4 PC5

(1) (2) (3) (4) (5)

Forward
Own BM 1.25 2.63 0.44 -0.35 -0.48
t-statistic [1.06] [2.74] [0.89] [-0.61] [-0.76]
R% ¢ (%) 1.47 2.46 -0.43 -0.24 -0.62

Reverse
Own BM 4.20 0.45 0.68 0.71 -0.09
t-statistic [3.41] [0.62] [ 0.60] [0.64] [-0.10]
R (%) 3.95 0.23 -0.54 0.41 -0.08

Panel B: Out-of-sample prediction across individual factors
Method R% ¢ (%) Total R%4 (%) R ¢ > 0% [5%—Sig ]
Mean (SD) Median

1) (2) 3) (4)

PC portfolio
Forward 0.64 (2.24) 0.99 1.15 67 [50]
Reverse -0.62 (3.16) -0.11 -0.15 44 [31]
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Table A4. Predictive regressions: In-sample results

The table summarizes the in-sample performance of factor return prediction using the conventional predictive regression ap-
proach. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table
A1l in the Appendix. The nine predictors are Book-to-market ratio (BM), Industry-adjusted book-to-market ratio (IND.BM),
Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1), 12-month momentum (MOM12), Volatility (VOL),
Characteristic spread (CS), Long-run reversal (LRREV), and Sentiment index (SENT). For SENT, I use Baker and Wurgler’s
(2006) full-sample orthogonalized series. Predictor construction detail is described in Table A2 in the Appendix. For each factor
and predictor, I run the univariate predictive regression

R; i1 = Bio + Bi1 Xt + €i,¢+1,

where R; ;11 is the excess return of factor portfolio 4 in month ¢ 4 1, and X} is the predictor variable in month ¢. I record the

coefficient estimate 51, the p-value from the t¢-test, and the regression R?. Columns (1) to (3) report the the total R? across
all factors for three sample periods: full, first half, and second half, respectively. Total R? is 1 — (£;SSE;/%;SST;), in which
SSE; = Ez—‘:l(Riﬁ/ — Ri,t)Q, and SST; = ZtT:l(Riyt — R;)?, with R, Ri,t, and Rf being the excess return of factor portfolio i
in month ¢, its return forecast in month ¢, and the sample mean return, respectively. T is the number of months in the sample.
Columns (4) to (6) reports the number of Bls that have the same sign as in original studies for three sample periods, and
Column (7) reports the number of estimates that have the same correct sign in both first and second half of the full sample.
The numbers in brackets indicate the number of statistically significant estimates (p-value in the t-test less than 10%). I use
the Newey and West’s (1987) t—statistic with a 2-year window for the kernel.

Predictor Total R? (%) Correct [Sig.]
Full sample  First-half  Second-half  Full sample  First-half  Second-half  First to second

(1) (2) ®3) (4) ®) (6) (7)

BM 0.71 0.68 0.75 64 [32] 69 [24] 59 [15] 54 [7)
IND.BM 0.73 0.72 0.78 62 [35] 66 [30] 57 [18] 52 [11]
ISSREP 0.28 0.53 0.36 49 [25] 54 [21] 45 [11] 34 [5]
MOMI 0.67 0.98 0.41 85 [41] 79 [44] 76 [16] 66 [10]
MOMI2 0.31 0.53 0.09 47 [8] 50 [10] 51 [10] 32 [2]
VOL 0.37 0.54 0.31 42 [20] 52 [25] 36 [5] 29 [4]
cs 0.19 0.13 0.52 81 [34] 72 [42] 66 [17] 53 [12]
LRREV 0.06 0.12 0.03 40 [16] 52 [21] 38 [6] 31 [5]
SENT 0.96 0.74 1.94 85 [43] 80 [46] 75 [19] 65 [11]
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Table A5. Structural break tests for PC predictive regressions and factor loadings
The table reports results from structural break tests in predictive regressions of PC portfolio returns on their book-to-market ratio (Panel A), and in the factor loadings (Panel
B). The sample period is from 1965:07 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table A1 in the Appendix. For tests of structural changes in
predictive regressions, the tests follow Bai and Perron (1998) and Bai and Perron (2003), and allow for an unknown number of structural breaks. In particular, panel A reports the
results from the univariate predictive regression

POF, = 8 + B BM + by,

where Pcf+1 is the excess return of PC portfolio k (k = 1,5) in month ¢ + 1, and BM¥ is the book-to-market ratio of PC portfolio k in month t. For tests of structural changes
in the factor loadings, the tests follow Chen et al. (2014) and allow for one unknown structural break in the factor loadings. In particular, panel B reports the results from the
regression of the first PC on the other four PCs for two subperiods before and after the break. Column (2) reports the UDmaz statistic and *** denotes significance at the 1% level
in a test of the null hypothesis of zero breaks. Column (3) reports the WDmaz(10%) for tests in panel A or supWald statistic for tests in panel B. The WDmaxz(10%) statistic
indicates the 10% significance level, and * denotes significance at the 10% level. Columns (4)-(6) show the estimated structural break dates. Columns (7)-(10) report the coefficient
estimates § for each subperiod. The numbers in parentheses are t-statistics based on Andrews (1991) standard errors.

Bai and Perron (1998) statistics Bai and Perron (1998) break dates Subperiod predictive coefficient
PC  UDmaxr  WDmaz (10%) / supWald  1st break  2nd break  3rd break (1) B(2) B(3) B(4)
(1) 2) 3) (4) (5) (6) (7) (8) 9) (10)

Panel A: Predictive regressions

1 6.64 8.80* 1983:06 2000:02 — 0.15 5.28 2.82 —
— [0.11] [4.53] [2.77] —
2 43.93*** 54.70* 1988:11 2000:08 2011:02 0.72 -0.97 7.59 0.75
[0.94] [-1.01] [7.44] [0.74]
3 - - - _ _ _ - - -
15.84*** 15.80* 1987:08 2001:05 — 0.51 4.25 -0.13 —
— [0.48] [3.58] [-0.14] —
5 _ - - - _ _ _ _ -
Panel B: Time-varying factor loadings
2 197.72%** 2000:05 -0.27 0.24
[-2.11] [2.76]
3 197.72%** 2000:05 0.02 0.30
[0.05] [1.45]
4 197.72%** 2000:05 -0.83 0.53
[-4.94] [2.70]
5 197.72%** 2000:05 -1.01 1.17

[-3.18]  [6.30]




Table A6. Factor prediction with shrinkage methods: Robustness across estimation designs

The table summarizes results on the out-of-sample factor predictability under the shrinkage methods across different estimation
designs. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail on the factors is in Table A1
in the Appendix. The predictors are are Book-to-market ratio, Industry-adjusted book-to-market ratio, Issuer-repurchaser spread,
One-month momentum, 12-month momentum, Volatility, Characteristic spread, Long-run reversal, and five components of
Sentiment index. Predictor construction detail is described in Table A2 in the Appendix. The shrinkage methods include forecast
combination (FC), discount mean square of prediction errors (DMSPE), predictor average (Average), principal component
regression (PCR), and partial least squares (PLS). FC is the equal-weighted average of univariate predictive regression forecasts
from all predictors. DMSPE is the weighted average of univariate predictive regression forecasts, in which forecasts that have
lower prediction errors over the holdout period have greater weight. Average is the univariate predictive regression forecast
based on the cross-sectional average of all predictors. PCR (PLS) is a univariate predictive regression forecast based on the first
principal component (return-relevant component) of all predictors. Panel A (B) reports the results using an expanding-window
design with the initial training period of 240 (360) months. Panel C reports the results using a rolling-window design with the
initial training period equal to the first half of the sample (1970:01-1995:12). The rolling window equals to the initial training
period. Columns (1)-(3) report the mean, the standard deviation (SD), and the median of RZ 4. Column (3) reports the total
RzOS' Column (4) reports the number of R%Ss that are non-negative, and statistically significant with p-value less than 0.1 in
brackets. I calculate Campbell and Thompson’s (2008) R ¢ using Equation 8. The total R2 g is calculated using Equation 9.
I use Clark and West’s (2007) procedure for the R% tests.

Method Individual R3¢ (%) Total R% g (%)  R¥g > 0[Sig.]
Mean SD  Median
nm @ B (4) (5)
Panel A: Expanding-window estimation design (240 months)

SO ) (3) (4) (5)

FC 0.57 0.49 0.50 0.65 81 [62]
DMSPE 0.59 0.50 0.47 0.65 82 [64]
Average  0.65  1.12 0.42 0.71 57 [45]
PCR 115 147 1.00 1.35 70 [61]
PLS 072 221 091 1.08 62 [60]
Panel B: Expanding-window estimation design (360 months)
FC 049 054 042 0.56 72 [45]
DMSPE 050 0.54  0.40 0.56 74 [45]
Average 054 121  0.44 0.61 52 [42]
PCR 1.01 1.70 0.88 1.25 63 [53]
PLS 031 240  0.33 0.67 50 [42]
Panel C: Rolling-window estimation design
FC 0.60 0.72 0.39 0.75 73 [39]
DMSPE 0.45 0.96 0.37 0.59 58 [29]
Average 0.31 1.23 0.05 0.48 47 [38]
PCR 0.35 1.82 -0.04 0.82 45 [39]
PLS 021 246 -0.70 0.34 38 [36]

15



Table A7. Factor prediction with shrinkage methods: Predictor exclusion

The table summarizes results on the out-of-sample factor predictability under the shrinkage methods when select predictor from
the rows are excluded for prediction. The sample period is from 1970:01 to 2021:12. The number of factors is 92. Additional detail
on the factors is in Table A1l in the Appendix. The predictors are Book-to-market ratio (BM), Industry-adjusted book-to-market
ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-month momentum (MOM1I), 12-month momentum (MOM12),
Volatility (VOL), Characteristic spread (CS), Long-run reversal (LRREYV), and five components of Sentiment index (SENT).
For SENT, I exclude all five components when making predictions. Predictor construction detail is described in Section 2 in the
main text. The shrinkage methods include forecast combination (FC), discount mean square of prediction errors (DMSPE),
predictor average (Average), principal component regression (PCR), and partial least squares (PLS). FC is the equal-weighted
average of univariate predictive regression forecasts from all predictors. DMSPE is the weighted average of univariate predictive
regression forecasts, in which forecasts that have lower prediction errors over the holdout period have greater weight. Average
is the univariate predictive regression forecast based on the cross-sectional average of all predictors. PCR (PLS) is a univariate
predictive regression forecast based on the first principal component (return-relevant component) of all predictors. I adopt an
expanding-window design for the out-of-sample tests. For FC, Average, PCR, and PLS, I use an initial training window equal to
the first half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout periods, I use
an initial training window from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the holdout period
to estimate forecasts for 1996:01. The holdout window length is the same for subsequent forecasts. I expand the training window
each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to 2021:12.
Panel A reports the mean and the total R%S (in brackets). Panel B reports the annualized mean and median Sharpe ratio (in
parentheses) for factor timing strategies. Panel C reports the annualized mean and median Certainty Equivalent Returns (in
parentheses) for factor timing strategies. The first row in each panel reports the base case results as in Tables 4, 6, and 7. The

optimal weight for factor timing strategy ¢ in month ¢ is estimated as R??t+l/('y&fyt+1) where R, 1 is the return forecast

7,t+
using forecasting method m, 0’1 1 is the sample variance using all data up to month ¢, and ~ is a risk aversion parameter.
I calculate Campbell and Thompson’s (2008) RQOS using Equation 8. The total R%S is calculated using Equation 9. I use a
risk aversion parameter of one, and impose a leverage constraint that the absolute weight on the factor portfolio is less than or
equal to two.

Excluded predictor FC DMSPE Average PCR PLS
) @) ) @) (5)
Panel A: Mean R2 g [total R2g] (%)
Base case 052 [0.60] 0.53[0.61] 0.52[0.58 1.08[1.30]  0.52 [0.91]
BM 0.51[0.57] 0.52[0.57] 0.47[0.46] 1.03 [1.17]  0.67 [0.99]
IND.BM 0.51[0.56] 052 [0.56] 0.45[0.45  0.99 [1.07]  0.66 [0.96]
ISSREP 0.51 [0.61]  0.52 [0.61]  0.57 [0.58]  1.10 [1.40] 55 [0.99]
MOM1 0.48 [0.57]  0.49 [0.57]  0.37 [0.42]  0.93 [1.16]  0.45 [0.83]
MOMI12 051 [0.61] 052[0.62] 040[0.46] 093 [1.12]  0.50 [0.91]
VoL 0.56 [0.64] 057 [0.64] 0.57[0.72] 1.07 [1.33]  0.72 [1.07]
cs 0.54 [0.63]  0.55[0.63] 0.57[0.64] 1.04 [1.33]  0.52 [0.91]
LRREV 054 [0.64] 056 [0.64] 0.50 [0.59]  0.99 [1.27]  0.47 [0.88]
SENT 0.53 [0.66] 054 [0.66]  0.28 [0.60]  0.15 [0.40]  -0.04 [0.32]
Panel B: Annualized mean (median) Sharpe ratio
Base case 0.23[0.23] 023[0.23] 0.22[0.22] 0.28[0.28) 0.27 [0.27]
BM 0.23 (0.22) 023 (0.22) 0.21 (0.21)  0.29 (0.26)  0.28 (0.29)
IND.BM 0.23 (0.21) 023 (0.22) 0.21 (0.22) 0.28 (0.27)  0.27 (0.28)
ISSREP 0.23 (0.24)  0.23 (0.23)  0.22 (0.22)  0.29 (0.29)  0.27 (0.27)
MOMI 022 (0.22) 022 (0.21) 0.18 (0.18)  0.25 (0.25)  0.24 (0.25)
MOMI12 023 (0.23) 023 (0.23) 0.19 (0.18)  0.26 (0.26)  0.25 (0.24)
VoL 024 (0.24) 024 (0.23) 023 (0.21) 0.28 (0.27)  0.28 (0.28)
cs 0.24 (0.23) 023 (0.22) 0.22 (0.20) 0.28 (0.30)  0.27 (0.27)
LRREV 0.23 (0.22) 0.23(0.22) 0.21 (0.21)  0.29 (0.20)  0.27 (0.26)
SENT 0.23 (0.21)  0.24 (0.22)  0.23 (0.25) 0.25 (0.24)  0.24 (0.24)
Panel C: Annualized mean (median) CER (%)

Base case 239 [1.85]  2.40 [1.96]  2.00 [2.17]  4.00 [3.11]  3.64 [3.43]
BM 2.32 (1.58)  2.33 (1.65) 1.87 (1.64) 4.08 (3.03)  3.91 (3.80)
IND.BM 2.29 (1.36)  2.30 (1.60) 1.82 (1.90) 3.62 (2.81)  3.61 (3.39)
ISSREP 2.43 (2.38) 242 (2.18) 2.01 (2.30) 4.18 (3.71)  3.66 (3.69)
MOMI 218 (1.30)  2.21 (1.61) 1.20 (1.28) 3.1 (2.34)  2.84 (2.92)
MOMI12 2.32 (1.90)  2.34 (2.06) 1.26 (1.31)  3.19 (2.41)  3.17 (2.64)
VOL 2,52 (2.49) 252 (2.28) 2.59 (1.97)  3.93 (3.22)  4.00 (3.54)
s 2.54 (2.16) 252 (2.17)  2.05 (2.00)  4.04 (3.30)  3.80 (3.30)
LRREV 2.50 (2.03) 251 (1L.77)  1.79 (1.61)  4.06 (3.33)  3.59 (3.25)
SENT 2.64 (1.82) 271 (2.05)  2.56 (2.33)  2.85 (2.18)  2.63 (2.55)
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Table A8. Factor prediction with shrinkage methods: Predictor inclusion

The table summarizes results on the out-of-sample factor predictability under the shrinkage methods when select variable from
the rows are included in the set of base predictors for prediction. The sample period is from 1970:01 to 2021:12. The number
of factors is 92. Additional detail on the factors is in Table Al in the Appendix. The base predictors are Book-to-market
ratio (BM), Industry-adjusted book-to-market ratio (IND.BM), Issuer-repurchaser spread (ISSREP), One-month momentum
(MOM1), 12-month momentum (MOM12), Volatility (VOL), Characteristic spread (CS), Long-run reversal (LRREV), and five
components of Sentiment index (SENT). Predictor construction detail is described in Section 2 in the main text. The included
predictors include 14 economic variables in Goyal and Welch (2008). The last row reports the results when all 14 variables
are included. The shrinkage methods include forecast combination (F'C'), discount mean square of prediction errors (DMSPE),
predictor average (Average), principal component regression (PCR), and partial least squares (PLS). FC is the equal-weighted
average of univariate predictive regression forecasts from all predictors. DMSPE is the weighted average of univariate predictive
regression forecasts, in which forecasts that have lower prediction errors over the holdout period have greater weight. Average
is the univariate predictive regression forecast based on the cross-sectional average of all predictors. PCR (PLS) is a univariate
predictive regression forecast based on the first principal component (return-relevant component) of all predictors. I adopt an
expanding-window design for the out-of-sample tests. For FC, Average, PCR, and PLS, I use an initial training window equal
to the first half of the sample (1970:01 - 1995:12) to estimate forecasts for 1996:01. For DMSPE that requires holdout periods,
I use an initial training window from 1970:01 to 1985:12, and the subsequent 120 months (1986:01 to 1995:12) as the holdout
period to estimate forecasts for 1996:01. The holdout window length is the same for subsequent forecasts. I expand the training
window each month to estimate forecasts for the rest of the sample. The out-of-sample evaluation period is from 1996:01 to
2021:12. I report the mean and the total RZOS (in brackets). The first row reports the base case results as in Table 4. I calculate
Campbell and Thompson’s (2008) RQOS using Equation 8. The total R2OS is calculated using Equation 9.

Included predictor Mean R% 4 [total R% 4] (%)

FC DMSPE Average PCR PLS

(1) (2) ®3) (4) ()
Base case 0.52 [0.60] 053 [0.61] 0.52 [0.58] 1.08 [L.30]  0.52 [0.91]
Dividend-price ratio 0.53 [0.60]  0.55[0.61] 0.36 [0.40] 1.02 [1.22]  0.57 [0.95]
Dividend yield 0.53[0.60] 0.54[0.61] 0.36 [0.40] 1.00 [1.20]  0.57 [0.95]
Earnings-price ratio 0.50 [0.57]  0.52 [0.58] 0.39 [0.49] 1.06 [1.26]  0.49 [0.85]
Dividend-earnings ratio 0.53[0.64] 0.54[0.64] 0.36[0.36] 0.85 [1.14]  0.48 [0.98]
Stock variance 0.45[0.54]  0.47[0.55] 0.30 [0.33] 0.93 [1.22]  0.27 [0.73]
Book-to-market ratio 0.50 [0.57]  0.52 [0.57] 0.54 [0.63] 0.97 [1.20]  0.47 [0.84]
Net equity expansion 0.48 [0.55]  0.50 [0.56]  0.43 [0.47]  0.96 [1.16]  0.39 [0.76]
Treasury bill yield 0.50 [0.59] 052 [0.59] 052 [0.60] 0.97 [1.26]  0.52 [0.92]
Long-term Treasury bond yield 0.49 [0.58]  0.51 [0.58]  0.55 [0.64] 0.98 [1.26]  0.47 [0.87]
Long-term Treasury bond return  0.49 [0.57]  0.50 [0.58]  0.48 [0.50]  1.08 [1.29]  0.47 [0.93]
Term spread 048 [0.56]  0.50 [0.57] 0.57 [0.62] 0.84 [1.05]  0.47 [0.87]
Default yield spread 0.52 [0.61] 0.54 [0.62] 0.53 [0.58] 0.92 [1.13]  0.59 [1.08]
Default return spread 045 [0.52]  0.47[0.53]  0.44 [0.51] 1.06 [1.27]  0.17 [0.54]
Inflation 049 [0.58]  0.51[0.58] 0.58 [0.68] 0.95 [1.22]  0.47 [0.93]
All 14 predictors 0.37[0.42]  0.39[0.44] 0.23[0.31] 0.37 [0.52]  -0.23 [0.34]
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